Microscopic description of nuclear structure and reactions with astrophysical applications

Thomas Neff, Hans Feldmeier

NAVI Physics Days GSI, Darmstadt

February 26-27, 2015

Overview

Realistic Effective Nucleon-Nucleon interaction:

Unitary Correlation Operator Method

Many-Body Approach:

Fermionic Molecular Dynamics

Applications:

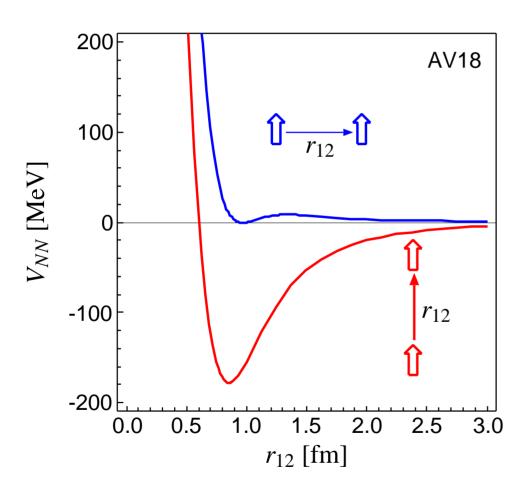
³He(α , γ)⁷Be Radiative Capture Reaction

¹²C in the Microscopic Cluster Model

¹²C in Fermionic Molecular Dynamics

Nuclear Force

Argonne V18 (T=0) spins aligned parallel or perpendicular to the relative distance vector

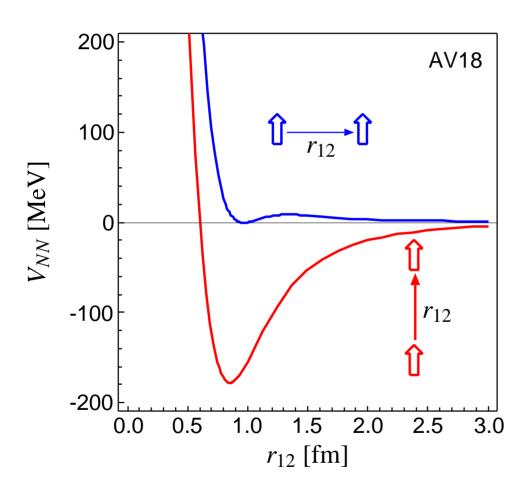


- strong repulsive core: nucleons can not get closer than ≈ 0.5 fm
- **→** central correlations

- strong dependence on the orientation of the spins due to the tensor force
- >> tensor correlations

Nuclear Force

Argonne V18 (T=0) spins aligned parallel or perpendicular to the relative distance vector



- strong repulsive core: nucleons can not get closer than ≈ 0.5 fm
- **→** central correlations

- strong dependence on the orientation of the spins due to the tensor force
- >> tensor correlations

the nuclear force will induce
strong short-range
correlations in the nuclear
wave function

Unitary Correlation Operator Method

Correlation Operator

• induce short-range (two-body) central and tensor correlations into the many-body state

$$\underline{C} = \underline{C}_{\Omega}\underline{C}_r = \exp\left[-i\sum_{i < j} \underline{g}_{\Omega, ij}\right] \exp\left[-i\sum_{i < j} \underline{g}_{r, ij}\right] , \quad \underline{C}^{\dagger}\underline{C} = \underline{1}$$

 correlation operator should conserve the symmetries of the Hamiltonian and should be of finite-range

Correlated Operators

correlated operators will have contributions in higher cluster orders

$$\hat{C}^{\dagger}\hat{Q}\hat{C} = \hat{Q}^{[1]} + \hat{Q}^{[2]} + \hat{Q}^{[3]} + \dots$$

 two-body approximation: correlation range should be small compared to mean particle distance

Correlated Interaction

$$\underline{C}^{\dagger} (\underline{T} + \underline{V}) \underline{C} = \underline{T} + \underline{V}_{UCOM} + \underline{V}_{UCOM}^{[3]} + \dots$$

correlated interaction phase shift equivalent to bare interaction by construction

Intrinsic Basis States

Fermionic

Slater determinant

$$|Q\rangle = \mathcal{A}\left(|q_1\rangle\otimes\cdots\otimes|q_A\rangle\right)$$

• antisymmetrized A-body state

Intrinsic Basis States

Fermionic

Slater determinant

$$|Q\rangle = \mathcal{A}\left(|q_1\rangle\otimes\cdots\otimes|q_A\rangle\right)$$

• antisymmetrized A-body state

Molecular

single-particle states

$$\langle \mathbf{x} | q \rangle = \sum_{i} c_{i} \exp \left\{ -\frac{(\mathbf{x} - \mathbf{b}_{i})^{2}}{2a_{i}} \right\} \otimes |\chi^{\uparrow}_{i}, \chi^{\downarrow}_{i}\rangle \otimes |\xi\rangle$$

- Gaussian wave-packets in phase-space (complex parameter \mathbf{b}_i encodes mean position and mean momentum), spin is free, isospin is fixed
- width a_i is an independent variational parameter for each wave packet
- use one or two wave packets for each single particle state

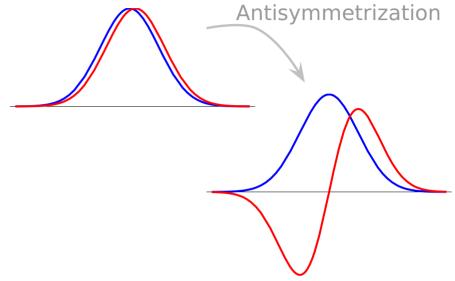
Intrinsic Basis States

Fermionic

Slater determinant

$$|Q\rangle = \mathcal{A}(|q_1\rangle \otimes \cdots \otimes |q_A\rangle)$$

• antisymmetrized A-body state



Molecular

single-particle states

$$\langle \mathbf{x} | q \rangle = \sum_{i} c_{i} \exp \left\{ -\frac{(\mathbf{x} - \mathbf{b}_{i})^{2}}{2a_{i}} \right\} \otimes |\chi^{\uparrow}_{i}, \chi^{\downarrow}_{i}\rangle \otimes |\xi\rangle$$

- Gaussian wave-packets in phase-space (complex parameter \mathbf{b}_i encodes mean position and mean momentum), spin is free, isospin is fixed
- width a_i is an independent variational parameter for each wave packet
- use one or two wave packets for each single particle state

FMD

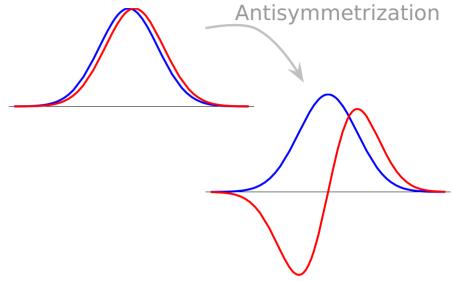
Intrinsic Basis States

Fermionic

Slater determinant

$$|Q\rangle = \mathcal{A}\left(|q_1\rangle\otimes\cdots\otimes|q_A\rangle\right)$$

antisymmetrized A-body state



Molecular

single-particle states

$$\langle \mathbf{x} | q \rangle = \sum_{i} c_{i} \exp \left\{ -\frac{(\mathbf{x} - \mathbf{b}_{i})^{2}}{2a_{i}} \right\} \otimes |\chi^{\uparrow}_{i}, \chi^{\downarrow}_{i}\rangle \otimes |\xi\rangle$$

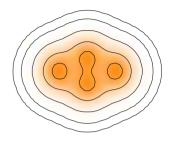
- Gaussian wave-packets in phase-space (complex parameter \mathbf{b}_i encodes mean position and mean momentum), spin is free, isospin is fixed
- width a_i is an independent variational parameter for each wave packet
- use one or two wave packets for each single particle st

FMD basis contains
HO shell model and
microscopic cluster model
as limiting cases

Symmetries and Projection

Breaking of symmetries

• Slater determinants $|Q\rangle$ may break symmetries of the Hamiltonian with respect to parity, rotations and translations



Projection

Restore symmetries by projection

$$\underline{P}^{\pi} = \frac{1}{2}(1 + \pi \Pi), \qquad \underline{P}_{MK}^{J} = \frac{2J + 1}{8\pi^{2}} \int d^{3}\Omega \, D_{MK}^{J^{*}}(\Omega) \underline{R}(\Omega), \qquad \underline{P}^{\mathbf{P}} = \frac{1}{(2\pi)^{3}} \int d^{3}X \, \exp\{-i(\mathbf{P} - \mathbf{P}) \cdot \mathbf{X}\}$$

Multiconfiguration Mixing

• **diagonalize** Hamiltonian in a set of projected intrinsic states $\{|Q^{(a)}\rangle, a = 1, ..., N\}$

$$|\Psi; J^{\pi}M\alpha\rangle = \sum_{K\alpha} P^{\pi} P^{J}_{MK} P^{\mathbf{P}=0} |Q^{(\alpha)}\rangle C^{\alpha}_{K\alpha}$$

$$\sum_{K'b} \underbrace{\langle \mathbf{Q}^{(a)} \, \big| \, \underbrace{\mathcal{H}}_{\mathcal{P}}^{\pi} \underbrace{\mathcal{P}}_{\mathcal{K}K'}^{J} \underbrace{\mathcal{P}^{\mathbf{P}=0} \, \big| \, \mathbf{Q}^{(b)} \, \rangle}_{\text{Hamiltonian kernel}} c_{K'b}^{\alpha} = E^{J^{\pi}\alpha} \sum_{K'b} \underbrace{\langle \, \mathbf{Q}^{(a)} \, \big| \, \underbrace{\mathcal{P}}_{\mathcal{K}K'}^{\pi} \underbrace{\mathcal{P}^{\mathbf{P}=0} \, \big| \, \mathbf{Q}^{(b)} \, \rangle}_{\text{norm kernel}} c_{K'b}^{\alpha}$$

³He(α , γ)⁷Be radiative capture

one of the key reactions in the solar pp-chains

• • • • • • • • • • • • • • • • • • • •

Effective Nucleon-Nucleon interaction:

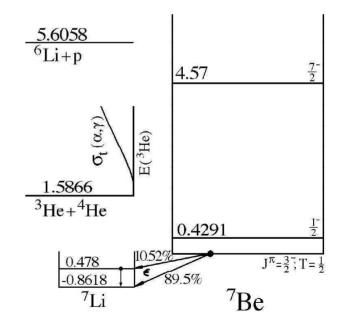
AV18-UCOM(SRG)

 $\alpha = 0.20 \text{ fm}^4 - \lambda \approx 1.5 \text{ fm}^{-1}$

Many-Body Approach:

Fermionic Molecular Dynamics

- Internal region:
 VAP configurations with radius constraint
- External region:Brink-type cluster configurations
- Matching to Coulomb solutions:
 Microscopic R-matrix method



Frozen configurations

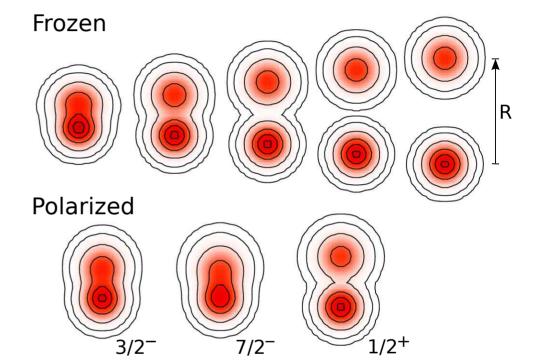
• antisymmetrized wave function built with 4 He and 3 He FMD clusters up to channel radius a=12 fm

Polarized configurations

FMD wave functions obtained by Variation after Projection on 1/2⁻, 3/2⁻, 5/2⁻, 7/2⁻ and 1/2⁺, 3/2⁺ and 5/2⁺ combined with radius constraint in the interaction region

Boundary conditions

 Match relative motion of clusters at channel radius to Whittaker/Coulomb functions with the microscopic Rmatrix method of the Brussels group D. Baye, P.-H. Heenen, P. Descouvement



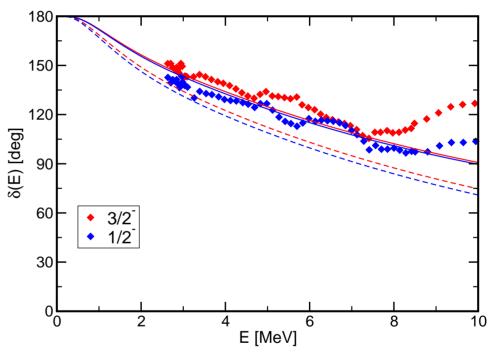
Bound states

		Experiment	FMD
⁷ Be	E _{3/2} _	-1.59 MeV	-1.49 MeV
	$E_{1/2-}$	-1.15 MeV	-1.31 MeV
	r_{ch}	2.647(17) fm	2.67 fm
	Q	_	-6.83 <i>e</i> fm²
⁷ Li	E _{3/2-}	-2.467 MeV	-2.39 MeV
	$E_{1/2-}$	-1.989 MeV	-2.17 MeV
	r_{ch}	2.444(43) fm	2.46 fm
	Q	-4.00(3) <i>e</i> fm ²	-3.91 <i>e</i> fm²

- centroid of bound state energies well described if polarized configurations included
- tail of wave functions tested by charge radii and quadrupole moments

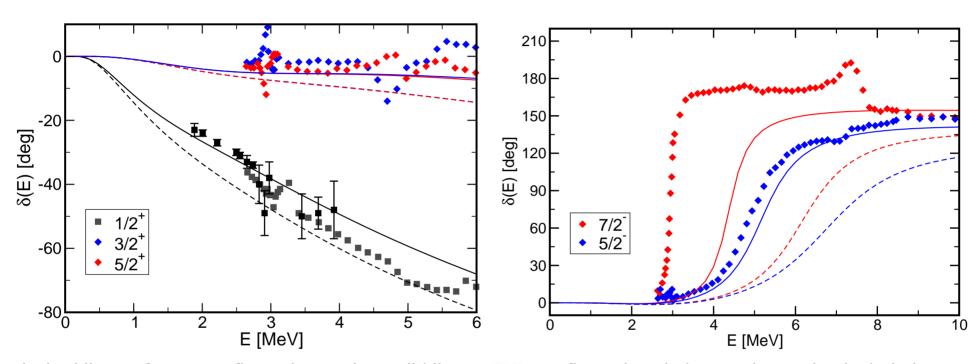
Phase shift analysis:

Spiger and Tombrello, PR **163**, 964 (1967)



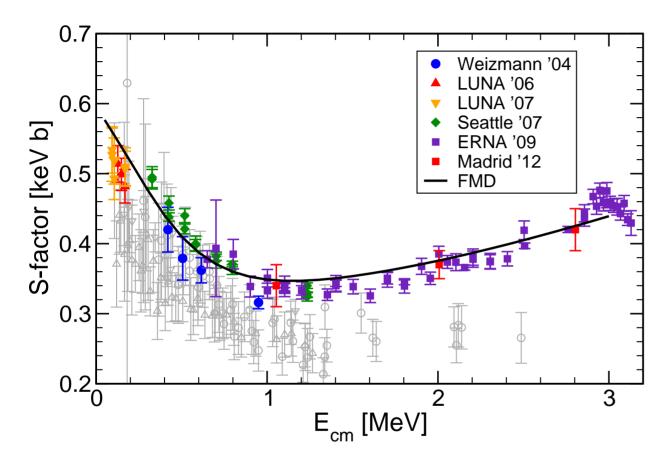
dashed lines – frozen configurations only solid lines – polarized configurations in interaction region included

 Scattering phase shifts well described, polarization effects important



dashed lines – frozen configurations only – solid lines – FMD configurations in interaction region included

- polarization effects important
- s- and d-wave scattering phase shifts well described
- f-wave splittings too small, additional spin-orbit strength from threebody forces expected



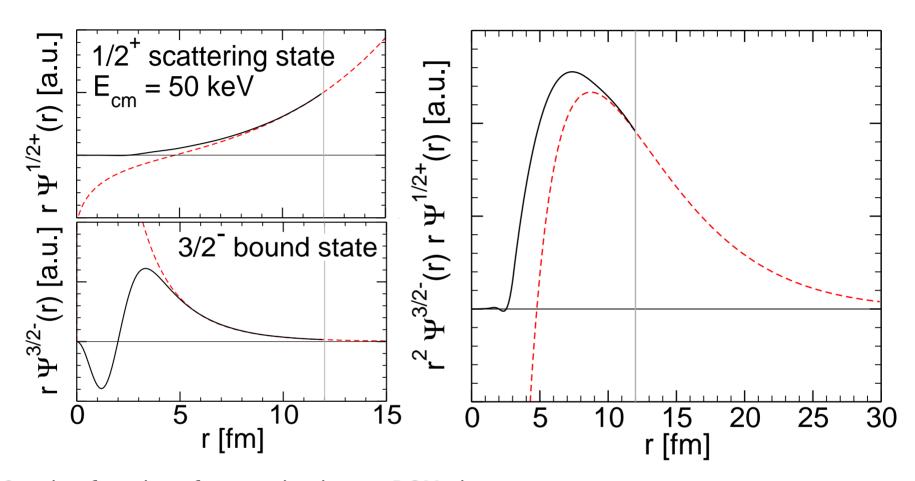
S-factor:

$$S(E) = \sigma(E)E \exp\{2\pi\eta\}$$
$$\eta = \frac{\mu Z_1 Z_2 e^2}{k}$$

Nara Singh *et al.*, PRL **93**, 262503 (2004) Bemmerer *et al.*, PRL **97**, 122502 (2006) Confortola *et al.*, PRC **75**, 065803 (2007) Brown *et al.*, PRC **76**, 055801 (2007) Di Leva *et al.*, PRL **102**, 232502 (2009)

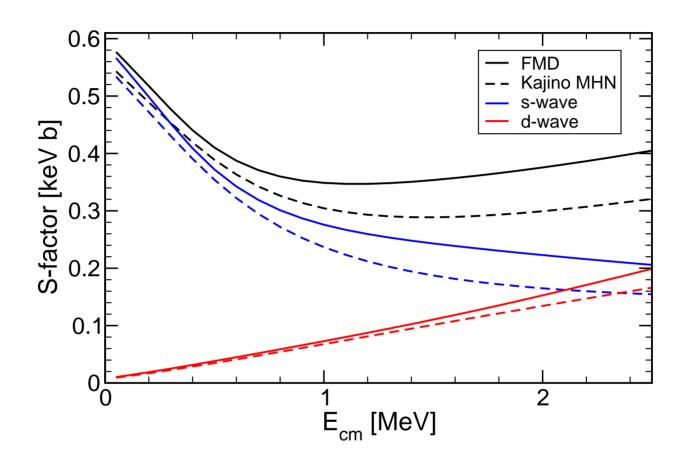
- dipole transitions from 1/2+, 3/2+, 5/2+ scattering states into 3/2-, 1/2- bound states
- → FMD is the only model that describes well the energy dependence and normalization of new high quality data
- >> fully microscopic calculation, bound and scattering states are described consistently

Overlap Functions and Dipole Matrixelements

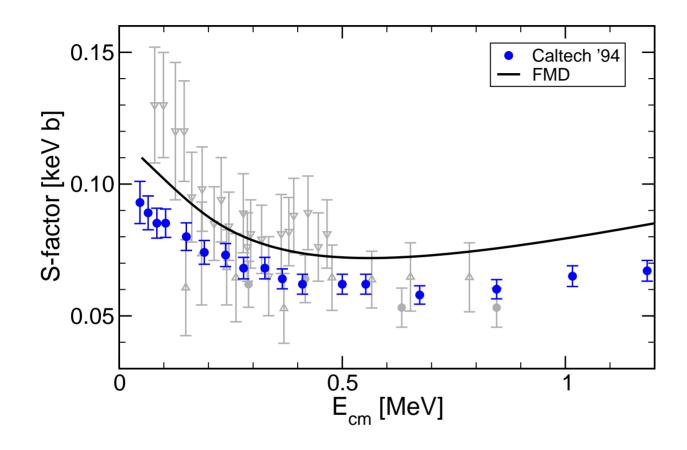


- Overlap functions from projection on RGM-cluster states
- Coulomb and Whittaker functions matched at channel radius $\alpha=12$ fm
- Dipole matrix elements calculated from overlap functions reproduce full calculation within 2%
- cross section depends significantly on internal part of wave function, description as an "external" capture is too simplified

Energy dependence of the S-Factor



- low-energy S-factor dominated by s-wave capture
- at 2.5 MeV equal contributions of s- and d-wave capture
- ➤ investigate angular distributions:
 NAVI collaboration with Tamás Szücs and Daniel Bemmerer

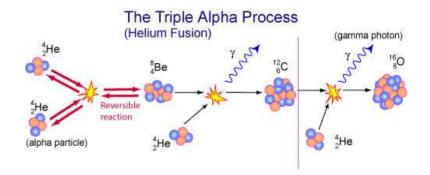


S-factor:

$$S(E) = \sigma(E)E \exp\{2\pi\eta\}$$
$$\eta = \frac{\mu Z_1 Z_2 e^2}{k}$$

Brune et al., PRC **50**, 2205 (1994)

- isospin mirror reaction of ${}^{3}\text{He}(\alpha, \gamma)^{7}\text{Be}$
- ⁷Li bound state properties and phase shifts well described
- ► FMD calculation describes energy dependence of Brune *et al.* data but cross section is larger by about 15%



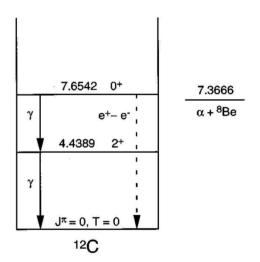
Cluster States in 12C

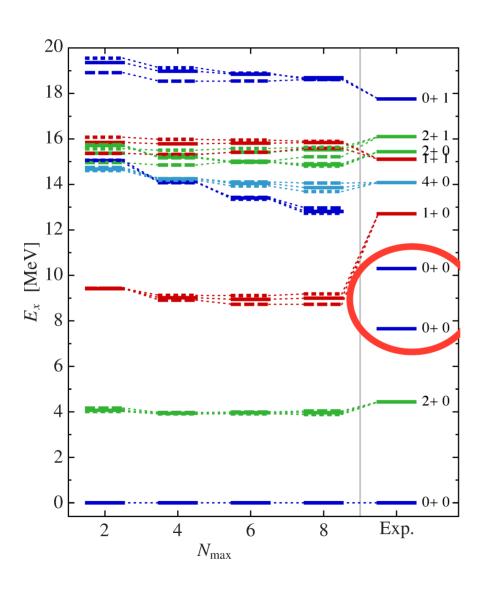
Structure

• Is the Hoyle state a pure α -cluster state ?

 $\frac{7.2747}{3\alpha}$

- **Second** 2⁺ **state** Zimmermann *et al.*, Phys. Rev. Lett. 110, 152502 (2013)
- Second 4⁺ state
 Freer et al., Phys. Rev. C 83, 034314 (2011)
- Other states in the continuum Fynbo et al., ...
- → Include continuum in the calculation!
- \rightarrow Compare microscopic α -cluster model and FMD



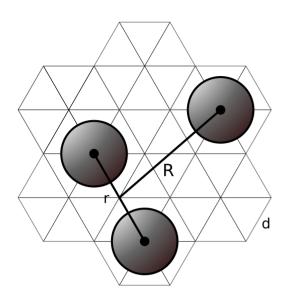


State of the art calculation with chiral NN+NNN forces

Hoyle state and other cluster states missing!

Maris, Vary, Calci, Langhammer, Binder, Roth, Phys. Rev. C 90, 014314 (2014)

Model space in internal region



$$\rho^2 = \frac{1}{2}\mathbf{r}^2 + \frac{2}{3}\mathbf{R}^2$$

Hyperradius

Model Space

- include all possible configurations on triangular grid $(d = 1.4 \, \text{fm})$ up to a certain hyperradius ρ
- no restriction on relative angular momenta

Basis States

Intrinsic states are projected on parity and angular momentum

$$\left| \Psi_{JMK\pi}^{3\alpha}(\mathbf{R}_{1}, \mathbf{R}_{2}, \mathbf{R}_{3}) \right\rangle =$$

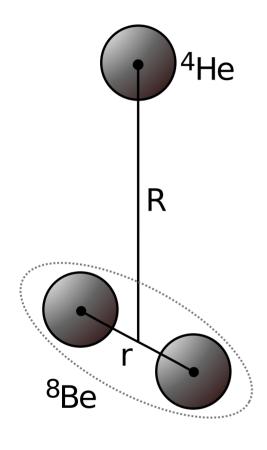
$$\mathcal{P}_{MK}^{\pi} \mathcal{P}_{MK}^{J} \mathcal{A} \left\{ \left| \Psi^{^{4}\text{He}}(\mathbf{R}_{1}) \right\rangle \otimes \left| \Psi^{^{4}\text{He}}(\mathbf{R}_{2}) \right\rangle \otimes \left| \Psi^{^{4}\text{He}}(\mathbf{R}_{3}) \right\rangle \right\}$$

Volkov Interaction

- simple central interaction
- parameters adjusted to give reasonable α binding energy and radius, $\alpha \alpha$ scattering data, adjusted to reproduce ¹²C ground state energy
- ✗ only reasonable for ⁴He, ⁸Be and ¹²C nuclei

Kamimura, Nuc. Phys. **A351** (1981) 456 Funaki et al., Phys. Rev. C **67** (2003) 051306(R)

Model space in external region



Model Space

- ⁸Be-⁴He cluster configurations with generator coordinate *R*
- ⁸Be ground state (0_1^+) and pseudo states $(2_1^+, 0_2^+, 2_2^+, 4_1^+)$ obtained by diagonalizing α - α configurations up to $r=10\,\mathrm{fm}$

Basis States

• ¹²C basis states are obtained by **double projection**: Project first ⁸Be

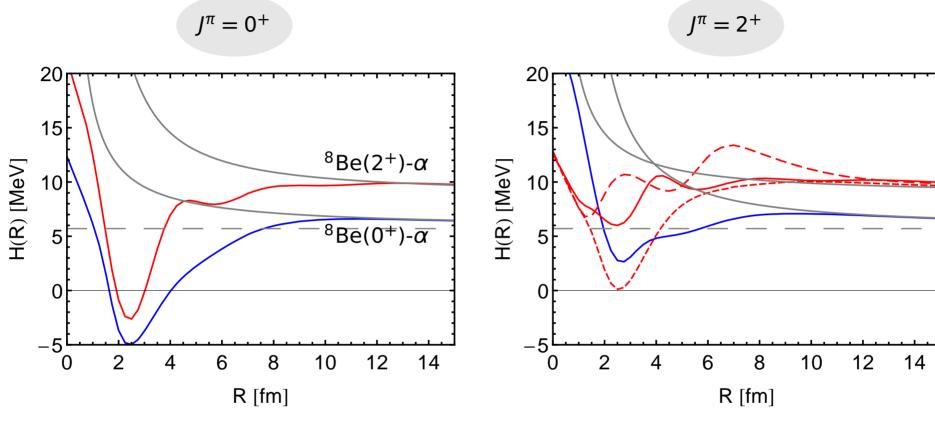
$$\left|\Psi_{IK}^{^{8}\text{Be}}\right\rangle = \sum_{i} P_{K0}^{I} \mathcal{A}_{\sim} \left\{ \left|\Psi^{^{4}\text{He}}\left(-\frac{r_{i}}{2}\mathbf{e}_{Z}\right) \otimes \left|\Psi^{^{4}\text{He}}\left(+\frac{r_{i}}{2}\mathbf{e}_{Z}\right)\right.\right\} c_{i}^{I}$$

then the combined wave function

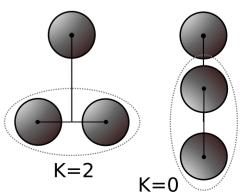
$$\left| \Psi_{IK;JM\pi}^{^{8}\text{Be},^{^{4}\text{He}}}(R_{j}) \right\rangle = \mathcal{P}^{\pi} \mathcal{P}_{MK}^{J} \mathcal{A} \left\{ \left| \Psi_{IK}^{^{8}\text{Be}}(-\frac{R_{j}}{3}\mathbf{e}_{z}) \right\rangle \otimes \left| \Psi^{^{4}\text{He}}(+\frac{2R_{j}}{3}\mathbf{e}_{z}) \right\rangle \right\}$$

will allow to match to Coulomb asymptotics

8 Be- α Energy Surfaces



- energy surfaces contain localization energy for relative motion of $^8{\rm Be}$ and α
- 2^+ energy surface depends strongly on orientation of 8 Be 2^+ state: K=2 most attractive



Bound state approximation – Convergence?

	ρ < 6 fm	ρ < 6 fm, R < 9 fm	ρ < 6 fm, R < 12 fm	ρ < 6 fm, R < 15 fm	Experiment	
$E(0_1^+)$	-89.63	-89.64	-89.64	-89.64	-92.16	
$E^*(2_1^+)$	2.53	2.54	2.54	2.54	4.44	
$E^*(0^+_2), \Gamma_{\alpha}(0^+_2)$	8.53	7.82	7.78	7.76	7.65, $(8.5 \pm 1.0)10^{-6}$	
$E^*(2^+_2), \Gamma_{\alpha}(2^+_2)$	10.11	9.18	9.08	8.93	$10.13(5), 2.08^{+0.33}_{-0.26}$	[3]
$r_{\text{charge}}(0_1^+)$	2.53	2.53	2.53	2.53	2.47(2)	
$r(0_1^+)$	2.39	2.39	2.39	2.39	_	
$r(0^{+}_{2})$	3.21	3.68	3.78	3.89	-	
$B(E2, 2_1^+ \rightarrow 0_1^+)$	9.03	9.12	9.08	9.08	7.6(4)	
$M(E0, 0_1^+ \rightarrow 0_2^+)$	7.20	6.55	6.40	6.27	5.47(9)	[2]
$B(E2, 2_2^+ \rightarrow 0_1^+)$	3.65	2.48	2.09	1.33	$1.57^{+0.14}_{-0.11}$	[3]

• properties of resonances (Hoyle state and second 2⁺ state) can not be determined in bound state approximation in an unambigouos way

^[1] Ajzenberg-Selove, Nuc. Phys. **A506**, 1 (1990)

^[2] Chernykh et al., Phys. Rev. Lett. **105**, 022501 (2010)

^[3] Zimmermann et al., Phys. Rev. Lett. 110, 152502 (2013); H. Weller, private communication

Matching to Coulomb asymptotics

Model Space

- Internal region: $3-\alpha$ configurations on a grid
- External region: 8 Be $(0^{+}, 2^{+}, 4^{+})$ - α configurations
- Asymptotically: only Coulomb interaction between ⁸Be and ⁴He clusters

GCM basis state expressed in RGM basis

- Microscopic GCM wave functions are functions of single-particle coordinates: internal wave functions of cluster, the relative motion of the clusters and the total center-of-mass motion are entangled
- Write GCM basis state in external region with RGM basis states

$$\left| \Psi_{IK;JM\pi}^{^{8}\text{Be},^{4}\text{He}}(R_{j}) \right\rangle = \sum_{L} \left\langle \begin{matrix} I & L \\ K & 0 \end{matrix} \middle| \begin{matrix} J \\ K \end{matrix} \right\rangle \int dr r^{2} \, \Gamma_{L}(R_{j};r) \left| \Phi_{(IL)JM\pi}^{^{8}\text{Be},^{4}\text{He}}(r) \right\rangle \otimes \left| \Phi^{\text{cm}} \right\rangle$$

with $(\pi = (-1)^{L})$

$$\langle \boldsymbol{\rho}, \boldsymbol{\xi}_{a}, \boldsymbol{\xi}_{b} \middle| \Phi_{(IL)JM\pi}^{^{8}\text{Be},^{4}\text{He}}(r) \rangle = \sum_{M_{I},M_{L}} \left\langle \begin{matrix} I & L \\ M_{I} & M_{L} \end{matrix} \middle| \begin{matrix} J \\ M \end{matrix} \right\rangle \mathcal{A} \left\{ \frac{\delta(\rho - r)}{r^{2}} \Phi_{IM_{I}}^{^{8}\text{Be}}(\boldsymbol{\xi}_{a}) \Phi^{^{4}\text{He}}(\boldsymbol{\xi}_{b}) Y_{LM_{L}}(\hat{\rho}) \right\}$$

asymptotically RGM states have good channel spin I and orbital angular momentum L

RGM norm kernel and Overlap functions

• RGM norm kernel reflects effects of antisymmetrization, channel c = (IL)J

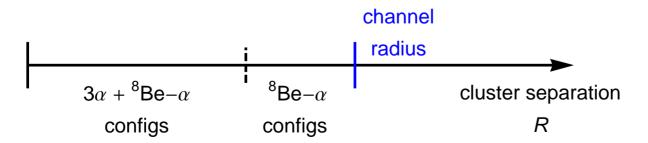
$$N_{c,c'}(r,r') = \langle \Phi_c(r) | \Phi_{c'}(r') \rangle \xrightarrow{r,r' \to \infty} \delta_{cc'} \frac{\delta(r-r')}{rr'}$$

Overlap functions can be interpreted as wave functions for point-like clusters

$$\psi_{c}(r) = \int dr' r'^{2} N_{c,c'}^{-1/2}(r,r') \langle \Phi_{c'}(r') | \Psi \rangle$$

Matching to the asymptotic solution

- Use using multichannel microscopic *R*-matrix approach Descouvement, Baye, Phys. Rept. 73, 036301 (2010)
- Check that results are independent from channel radius: used a = 16.5 fm here



Matching to Coulomb asymptotics

Bound states

Whittaker functions

$$\psi_c(r) = A_c \frac{1}{r} W_{-\eta_c, L_c + 1/2}(2\kappa_c r), \qquad \kappa_c = \sqrt{-2\mu(E - E_c)}$$

Resonances

• purely outgoing Coulomb, k complex

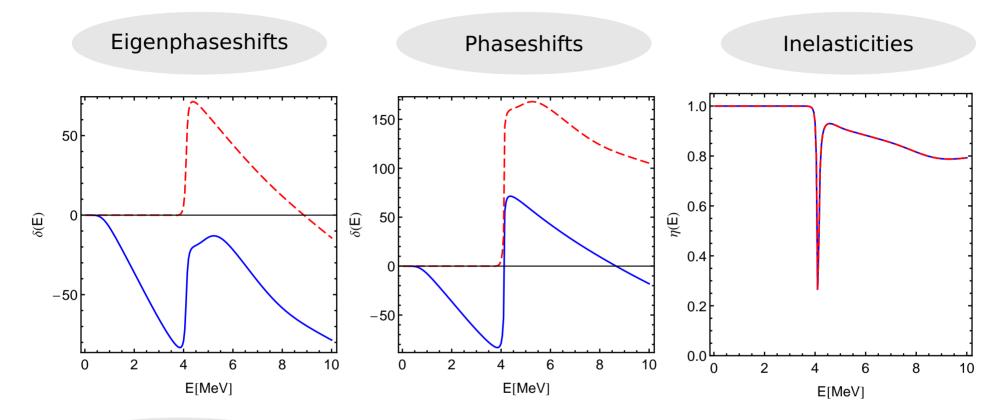
$$\psi_c(r) = A_c \frac{1}{r} O_{L_c}(\eta_c, k_c r), \qquad k_c = \sqrt{2\mu(E - E_c)}$$

Scattering states

• in- and outgoing Coulomb (incoming channel c_0)

$$\psi_c(r) = \frac{1}{r} \left\{ \delta_{L_c, L_0} I_{L_c}(\eta_c, k_c r) - S_{c, c_0} O_{L_c}(\eta_c, k_c r) \right\}, \qquad k_c = \sqrt{2\mu(E - E_c)}$$

- Diagonal phase shifts and inelasticity parameters: $S_{cc} = \eta_c \exp\{2i\delta_c\}$
- Eigenphases: $S = U^{-1}DU$, $D_{\alpha\alpha} = \exp\{2i\delta_{\alpha}\}$

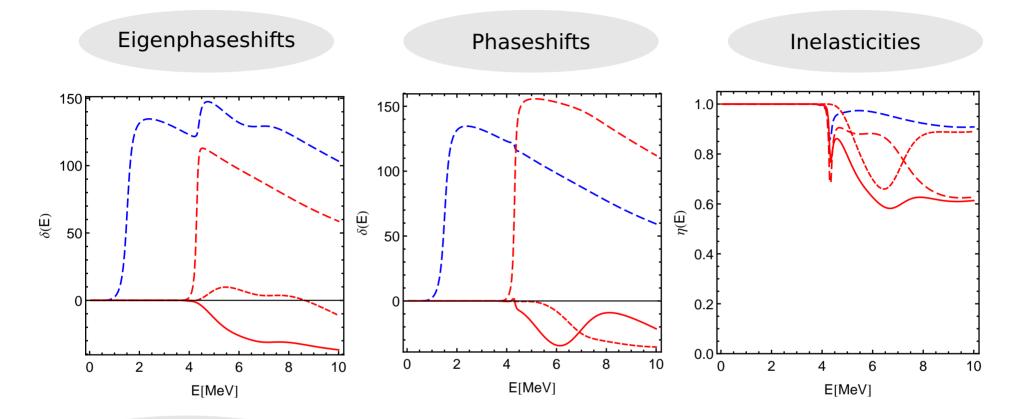


Gamow states

	E [MeV]	Γ_{α} [MeV]	
0+	0.29	$1.78 \cdot 10^{-5}$	
$0^{\frac{1}{4}}_{3}$	4.11	0.12	
0+	4.76	1.57	(?)

- non-resonant background
- strong coupling between ⁸Be(0+) and ⁸Be(2+) channel at 4.1 MeV
- Hoyle state missed when scanning the phase shifts
- stability of broad resonance with respect to channel radius?

Cluster Model: ${}^8\text{Be}(0^+_1, 2^+_1)$ - α Continuum 2^+ Phase shifts



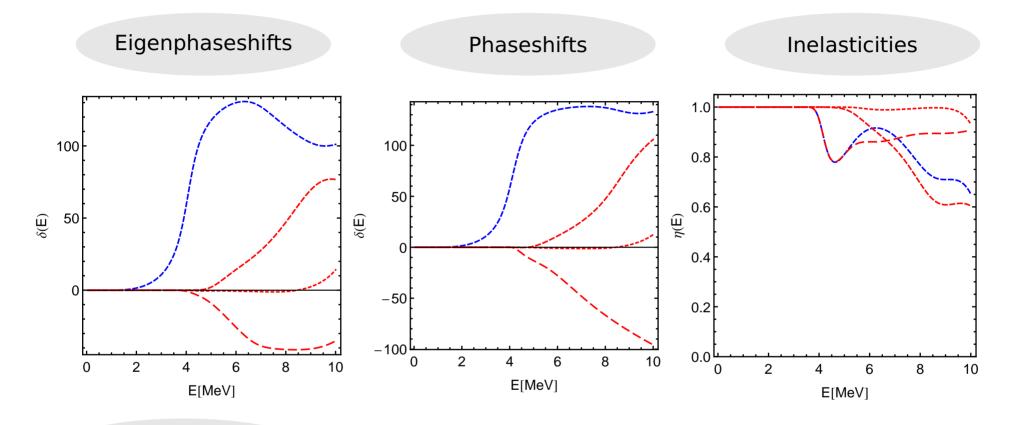
Gamow states

	E [MeV]	Γ_{α} [MeV]	
2+2	1.51	0.32	
2+	4.31	0.14	

• non-resonant background

• L = 2 ⁸Be(0⁺) and ⁸Be(2⁺) resonances

Cluster Model: ${}^8\text{Be}(0_1^+, 2_1^+)$ - α Continuum 4^+ Phase shifts



Gamow states

	E [MeV]	Γ_{α} [MeV]
4+1	1.17	$8.07 \cdot 10^{-6}$
4^{-1}_{2}	4.06	0.98

 4₁ state (ground state band) very narrow, missed when scanning phase shifts

• 4⁺₂ state mostly ⁸Be(0+) but some mixing

Microscopic α-Cluster Model Including Continuum

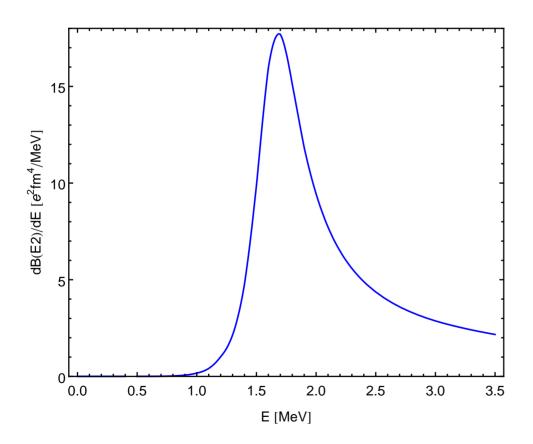
	ρ < 6 fm	ρ < 6 fm	ρ < 6 fm	ρ < 6 fm	
	$R < 9 \mathrm{fm}$	$R < 12 \mathrm{fm}$	$R < 15 \mathrm{fm}$	Continuum	Experiment
$E(0_1^+)$	-89.64	-89.64	-89.64	-89.64	-92.16
$E^*(\bar{2}_1^+)$	2.54	2.54	2.54	2.54	4.44
$E^*(0_2^+), \Gamma_{\alpha}(0_2^+)$	7.82	7.78	7.76	$7.76, 3.04 \cdot 10^{-3}$	7.65, $(8.5 \pm 1.0) \cdot 10^{-6}$
$E^*(2^+_2), \Gamma_{\alpha}(2^+_2)$	9.18	9.08	8.93	8.98, 0.46	$10.13(5), 2.08^{+0.33}_{-0.26}$
$r_{\text{charge}}(0_1^+)$	2.53	2.53	2.53	2.53	2.47(2)
$r(0_1^+)$	2.39	2.39	2.39	2.39	_
$r(0^{-1}_{2})$	3.68	3.78	3.89	4.08 + 0.07i	_
$B(E2, 2_1^+ \rightarrow 0_1^+)$	9.12	9.08	9.08	9.08	7.6(4)
$M(E0, 0_1^+ \rightarrow 0_2^+)$	6.55	6.40	6.27	6.15 + 0.01i	5.47(9)
$B(E2, 2^{+}_{2} \rightarrow 0^{+}_{1})$	2.48	2.09	1.33	2.14 + 1.45i	$1.57^{+0.14}_{-0.11}$

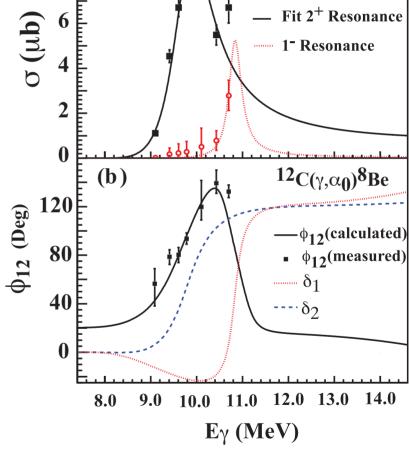
- Resonances are calculated as Gamow states
- Matrix elements including resonances are regulated according to Berggren and Gyarmati
- Imaginary part provides information about uncertainty of matrix elements

Berggren, Nucl. Phys. **A109**, 265 (1968) Gyarmati, Krisztinkovics, Vertse, Phys. Lett. **B41**, 475 (1972) Berggren, Phys. Lett. **B373**, 1 (1996)

Microscopic α-Cluster Model Strength distributions

- Use real continuum (scattering states)
- Might be the better way to compare to experiment, especially for broad and overlapping resonances (background contributions)





(a)

X E1 transition isospin-forbidden in cluster model!

Zimmermann et al., Phys. Rev. Lett. **110**, 152502 (2013)

■ E2 Cross Section

• E1 Cross Section

Work in Progress: FMD calculations with ${}^8\text{Be-}\alpha$ continuum

UCOM interaction

- AV18 UCOM(SRG) (α =0.20 fm⁴, λ =1.5 fm⁻1)
- Increase strength of spin-orbit force by a factor of two to partially account for omitted three-body forces

8 Be- α Continuum

- To get a reasonable description of ⁸Be it is essential to include polarized configurations
- > Calculate strength distributions
- **▶** Investigate non-cluster states: non-natural parity states, T = 1 states, M1 transitions, ¹²B and ¹²N β -decay into ¹²C, . . .

Model space in internal region

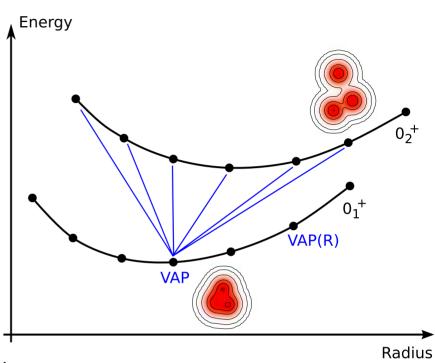
Model Space

- no assumption of α -clustering
- complete basis not feasible, find the "most important" basis states
- determine wave packet parameters by variation

VAP, VAP with constraints, Multiconfiguration-VAP

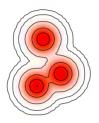
For each angular momentum $(0^+, 1^+, 2^+, ...)$

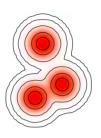
- VAP(R): create additional basis states by variation with a constraint on the radius of the intrinsic state
- MC-VAP: keep VAP state fix and vary the parameters of a second Slater determinant to minimize the energy of the second eigenstate in a multiconfiguration mixing calculation
- MC-VAP(R): create additional basis states by adding a constraint on the radius of the second intrinsic state

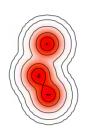


Important Configurations

 Calculate the overlap with FMD basis states to find the most important contributions to the eigenstates







$$\left| \left\langle \cdot \mid 0_1^+ \right\rangle \right| = 0.94$$
$$\left| \left\langle \cdot \mid 2_1^+ \right\rangle \right| = 0.93$$

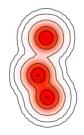
$$\left|\left\langle \cdot \mid 0_2^+ \right\rangle \right| = 0.64$$

$$\left|\left\langle \cdot \mid 0_{2}^{+} \right\rangle\right|=0.64 \quad \left|\left\langle \cdot \mid 0_{2}^{+} \right\rangle\right|=0.58 \quad \left|\left\langle \cdot \mid 0_{2}^{+} \right\rangle\right|=0.57 \quad \left|\left\langle \cdot \mid 0_{2}^{+} \right\rangle\right|=0.45$$

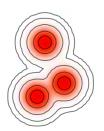
$$\left|\left\langle \cdot \mid 0_2^+ \right\rangle \right| = 0.57$$

$$\left|\left\langle \cdot \mid 0_2^+ \right\rangle \right| = 0.45$$

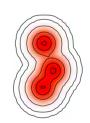
$$\left|\left\langle \cdot \right| 3_{1}^{-} \right\rangle \right| = 0.91$$



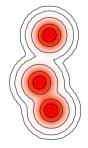
$$\langle \cdot | 2_2^+ \rangle | = 0.50$$



$$\left|\left\langle \cdot \mid 2_2^+ \right\rangle \right| = 0.49$$



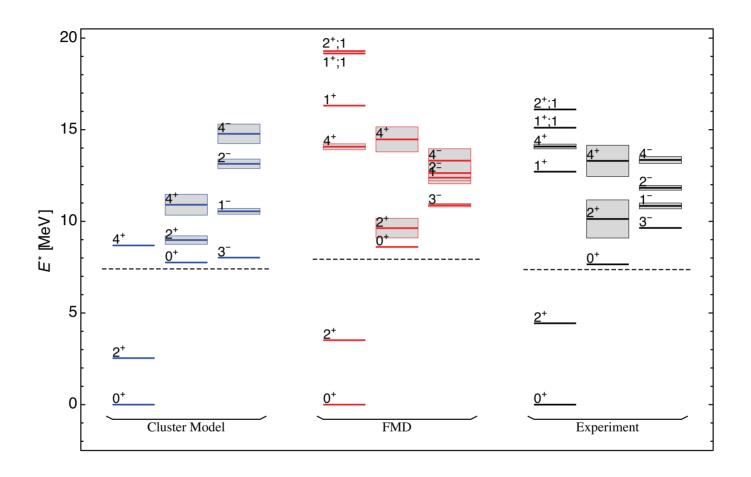
$$\left|\left\langle \cdot \mid 3_{1}^{-} \right\rangle\right| = 0.91 \qquad \left|\left\langle \cdot \mid 2_{2}^{+} \right\rangle\right| = 0.50 \quad \left|\left\langle \cdot \mid 2_{2}^{+} \right\rangle\right| = 0.49 \quad \left|\left\langle \cdot \mid 2_{2}^{+} \right\rangle\right| = 0.44 \quad \left|\left\langle \cdot \mid 2_{2}^{+} \right\rangle\right| = 0.41$$



$$\left|\left\langle \cdot \mid 2_{2}^{+} \right\rangle \right| = 0.41$$

FMD basis states are not orthogonal!

 0_2^+ and 2_2^+ states have no rigid intrinsic structure



- FMD provides a reasonable description of the ground state band, the cluster states related to the Hoyle state and the negative parity states
- Spin-flip states (1⁺ T = 0, 1 and 2⁺ T = 1) appear to be reasonably well described although they are somewhat too high in energy

Summary

Unitary Correlation Operator Method

• Explicit description of short-range central and tensor correlations

Fermionic Molecular Dynamics

 Gaussian wave-packet basis contains HO shell model and Brink-type cluster states

³He(α , γ)⁷Be Radiative Capture

Bound states, scattering states, transitions from the continuum

Microscopic cluster model for ¹²C

- Model space with 3 α and 8 Be- α configurations
- Matching with Coulomb continuum, resonances and scattering states
- Hoyle state band build on 8 Be(gs)- α

FMD calculations for ¹²C

- VAP and Multiconfig-VAP in internal region, 8 Be- α in external region
- ➤ Investigate EM and GT transitions to the continuum
- \rightarrow 8Be-α vs real three-body asymptotics?