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Overview

Realistic Effective Nucleon-Nucleon interaction:

Unitary Correlation Operator Method

Many-Body Approach:

Fermionic Molecular Dynamics

Applications:

3He(α,γ)7Be Radiative Capture Reaction

12C in the Microscopic Cluster Model

12C in Fermionic Molecular Dynamics
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Nuclear Force

Thomas Neff – NAVI Physics Days, Feb 26, 2015

Argonne V18 (T=0)

spins aligned parallel or perpendicular to the

relative distance vector
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• strong repulsive core:

nucleons can not get closer

than ≈ 0.5 fm

➼ central correlations

• strong dependence on the

orientation of the spins due

to the tensor force

➼ tensor correlations
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Nuclear Force
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• strong repulsive core:

nucleons can not get closer

than ≈ 0.5 fm

➼ central correlations

• strong dependence on the

orientation of the spins due

to the tensor force

➼ tensor correlations

the nuclear force will induce

strong short-range

correlations in the nuclear

wave function
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Unitary Correlation Operator Method

Thomas Neff – NAVI Physics Days, Feb 26, 2015

Correlation Operator

• induce short-range (two-body) central and tensor correlations into the many-body state

C
∼
= C
∼Ω

C
∼ r
= exp
�
−
∑

<j

g
∼
Ω,j
�
exp
�
−
∑

<j

g
∼
r,j

�
, C
∼

†C
∼
= 1
∼

• correlation operator should conserve the symmetries of the Hamiltonian and should be

of finite-range

Correlated Operators

• correlated operators will have contributions in higher cluster orders

C
∼

†O
∼
C
∼
= Ô
∼

[1] + Ô
∼

[2] + Ô
∼

[3] + . . .

• two-body approximation: correlation range should be small compared to mean particle

distance

Correlated Interaction

C
∼

† (T
∼
+ V
∼
) C
∼
= T
∼
+ V
∼ UCOM

+V
∼

[3]
UCOM + . . .

• correlated interaction phase shift equivalent to bare interaction by construction
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Intrinsic Basis States
FMD
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Fermionic

Slater determinant

�
�Q
�
= A
∼

�
�
�q1
�
⊗ · · · ⊗
�
�qA
�
�

• antisymmetrized A-body state

Feldmeier, Schnack, Rev. Mod. Phys. 72 (2000) 655

Neff, Feldmeier, Nucl. Phys. A738 (2004) 357
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Intrinsic Basis States
FMD
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Fermionic

Slater determinant

�
�Q
�
= A
∼

�
�
�q1
�
⊗ · · · ⊗
�
�qA
�
�

• antisymmetrized A-body state

Molecular

single-particle states



x
�
�q
�
=
∑



c exp

�

−
(x− b)

2

2

�

⊗
�
�χ↑, χ

↓


�
⊗
�
�ξ
�

• Gaussian wave-packets in phase-space (complex parameter b en-

codes mean position and mean momentum), spin is free, isospin is

fixed

• width  is an independent variational parameter for each wave

packet

• use one or two wave packets for each single particle state

Feldmeier, Schnack, Rev. Mod. Phys. 72 (2000) 655

Neff, Feldmeier, Nucl. Phys. A738 (2004) 357
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• Gaussian wave-packets in phase-space (complex parameter b en-

codes mean position and mean momentum), spin is free, isospin is

fixed

• width  is an independent variational parameter for each wave

packet

• use one or two wave packets for each single particle state

Antisymmetrization

Feldmeier, Schnack, Rev. Mod. Phys. 72 (2000) 655

Neff, Feldmeier, Nucl. Phys. A738 (2004) 357
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Intrinsic Basis States
FMD
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⊗
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• Gaussian wave-packets in phase-space (complex parameter b en-

codes mean position and mean momentum), spin is free, isospin is

fixed

• width  is an independent variational parameter for each wave

packet

• use one or two wave packets for each single particle state

Antisymmetrization

FMD basis contains

HO shell model and

microscopic cluster model

as limiting cases
Feldmeier, Schnack, Rev. Mod. Phys. 72 (2000) 655

Neff, Feldmeier, Nucl. Phys. A738 (2004) 357
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Symmetries and Projection
FMD

Thomas Neff – NAVI Physics Days, Feb 26, 2015

Breaking of symmetries

• Slater determinants
�
�Q
�
may break symmetries of the Hamiltonian

with respect to parity, rotations and translations
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Projection

• Restore symmetries by projection

P
∼

π =
1

2
(1+π

∼
), P

∼

J

MK =
2J+ 1

8π2

∫

d3Ω D
J

MK

⋆

(Ω)R
∼
(Ω), P

∼

P =
1

(2π)3

∫

d3X exp{−(P
∼
−P) ·X}

Multiconfiguration Mixing

• diagonalize Hamiltonian in a set of projected intrinsic states

�
�
�Q()
�
,  = 1, . . . , N

�

�
�Ψ; JπMα
�
=
∑

K

P
∼

πP
∼

J

MKP∼
P=0
�
�Q()
�
cα
K

∑

K ′b



Q()
�
�H
∼
P
∼

πP
∼

J

KK ′P∼
P=0
�
�Q(b)
�

︸ ︷︷ ︸

Hamiltonian kernel

cα
K ′b
= EJ

πα
∑

K ′b



Q()
�
�P
∼

πP
∼

J

KK ′P∼
P=0
�
�Q(b)
�

︸ ︷︷ ︸

norm kernel

cα
K ′b
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3He(α,γ)7Be radiative capture

one of the key reactions in the solar pp-chains

Effective Nucleon-Nucleon interaction:

AV18-UCOM(SRG)
α = 0.20 fm4 – λ ≈ 1.5 fm−1

Many-Body Approach:

Fermionic Molecular Dynamics
• Internal region:

VAP configurations with radius constraint

• External region:

Brink-type cluster configurations

• Matching to Coulomb solutions:

Microscopic R-matrix method

Neff, Phys. Rev. Lett. 106, 042502 (2011)
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FMD model space

3He(α,γ)7Be

Thomas Neff – NAVI Physics Days, Feb 26, 2015

R

3/2 7/2 1/2+
__

Frozen

Polarized

Frozen configurations

• antisymmetrized wave function built

with 4He and 3He FMD clusters up to

channel radius =12 fm

Polarized configurations

• FMD wave functions obtained by Varia-

tion after Projection on 1/2−, 3/2−,

5/2−, 7/2− and 1/2+, 3/2+ and 5/2+

combined with radius constraint in the

interaction region

Boundary conditions

• Match relative motion of clusters at

channel radius to Whittaker/Coulomb

functions with the microscopic R-

matrix method of the Brussels group

D. Baye, P.-H. Heenen, P. Descouvemont
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p-wave Bound and Scattering States

3He(α,γ)7Be
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Bound states

Experiment FMD
7Be E3/2− -1.59 MeV -1.49 MeV

E1/2− -1.15 MeV -1.31 MeV

rch 2.647(17) fm 2.67 fm

Q – -6.83 e fm2

7Li E3/2− -2.467 MeV -2.39 MeV

E1/2− -1.989 MeV -2.17 MeV

rch 2.444(43) fm 2.46 fm

Q -4.00(3) e fm2 -3.91 e fm2

Phase shift analysis:

Spiger and Tombrello, PR 163, 964 (1967)
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gion included

• centroid of bound state energies well de-

scribed if polarized configurations

included

• tail of wave functions tested by charge

radii and quadrupole moments
• Scattering phase shifts well described,

polarization effects important
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s-, d- and ƒ -wave Scattering States

3He(α,γ)7Be
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• polarization effects important

• s- and d-wave scattering phase shifts well described

• ƒ -wave splittings too small, additional spin-orbit strength from three-

body forces expected
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S-Factor

3He(α,γ)7Be
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S-factor:

S(E) = σ(E)Eexp{2πη}

η =
μZ1Z2e

2

k

Nara Singh et al., PRL 93, 262503 (2004)
Bemmerer et al., PRL 97, 122502 (2006)
Confortola et al., PRC 75, 065803 (2007)
Brown et al., PRC 76, 055801 (2007)
Di Leva et al., PRL 102, 232502 (2009)

• dipole transitions from 1/2+, 3/2+, 5/2+ scattering states into 3/2−, 1/2− bound states

➼ FMD is the only model that describes well the energy dependence and normalization of

new high quality data

➼ fully microscopic calculation, bound and scattering states are described consistently
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Overlap Functions and Dipole Matrixelements

3He(α,γ)7Be
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 scattering state
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• Overlap functions from projection on RGM-cluster states

• Coulomb and Whittaker functions matched at channel radius =12 fm

• Dipole matrix elements calculated from overlap functions reproduce full calculation
within 2%

• cross section depends significantly on internal part of wave function,
description as an “external” capture is too simplified
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Energy dependence of the S-Factor

3He(α,γ)7Be
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• low-energy S-factor dominated by s-wave capture

• at 2.5 MeV equal contributions of s- and d-wave capture

➼ investigate angular distributions:

NAVI collaboration with Tamás Szücs and Daniel Bemmerer
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S-Factor

3H(α,γ)7Li
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S(E) = σ(E)Eexp{2πη}
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Brune et al., PRC 50, 2205 (1994)

• isospin mirror reaction of 3He(α,γ)7Be

• 7Li bound state properties and phase shifts well described

➼ FMD calculation describes energy dependence of Brune et al. data
but cross section is larger by about 15%
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Cluster States in 12C

Structure

• Is the Hoyle state a pure α-cluster state ?

• Second 2+ state

Zimmermann et al., Phys. Rev. Lett. 110, 152502 (2013)

• Second 4+ state

Freer et al., Phys. Rev. C 83, 034314 (2011)

• Other states in the continuum

Fynbo et al., . . .

➼ Include continuum in the calculation!

➼ Compare microscopic α-cluster model and FMD

Neff, Feldmeier, arXiv:1409.3726
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Cluster States in the NCSM ?
Cluster States in 12C

Thomas Neff – NAVI Physics Days, Feb 26, 2015

Maris, Vary, Calci, Langhammer, Binder, Roth, Phys. Rev. C 90, 014314 (2014)

State of the art
calculation with chiral

NN+NNN forces

Hoyle state and other
cluster states missing !
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Model space in internal region
Microscopic α-Cluster Model
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ρ2 =
1

2
r2 +

2

3
R2

Hyperradius

Model Space

• include all possible configurations on triangular grid
(d = 1.4 fm) up to a certain hyperradius ρ

• no restriction on relative angular momenta

Basis States

• Intrinsic states are projected on parity and angular
momentum

�
�Ψ3α

JMKπ
(R1,R2,R3)
�
=

P
∼

πP
∼

J

MKA∼

n�
�Ψ

4He(R1)
�
⊗
�
�Ψ

4He(R2)
�
⊗
�
�Ψ

4He(R3)
�
o

Volkov Interaction

• simple central interaction

• parameters adjusted to give reasonable α binding
energy and radius, α − α scattering data, adjusted
to reproduce 12C ground state energy

✘ only reasonable for 4He, 8Be and 12C nucleiKamimura, Nuc. Phys. A351 (1981) 456

Funaki et al., Phys. Rev. C 67 (2003) 051306(R)
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Model space in external region
Microscopic α-Cluster Model
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Model Space

• 8Be-4He cluster configurations with generator coordinate R

• 8Be ground state (0+
1
) and pseudo states (2+

1
, 0+

2
, 2+

2
, 4+

1
)

obtained by diagonalizing α-α configurations up to r = 10 fm

Basis States

• 12C basis states are obtained by double projection:

Project first 8Be

�
�Ψ

8Be
K

�
=
∑



P
∼


K0

A
∼

n�
�Ψ

4He(−
r
2
ez
�
⊗
�
�Ψ

4He(+
r
2
ez
�
o

c


then the combined wave function

�
�Ψ

8Be,4He
K;JMπ

(Rj)
�
= P
∼

πP
∼

J

MKA∼

n�
�Ψ

8Be
K
(−

Rj
3
ez)
�
⊗
�
�Ψ

4He(+
2Rj
3
ez
�
o

• will allow to match to Coulomb asymptotics
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8Be-α Energy Surfaces
Microscopic α-Cluster Model

Thomas Neff – NAVI Physics Days, Feb 26, 2015

0 2 4 6 8 10 12 14
-5

0

5

10

15

20

R @fmD

H
HR
L
@M

eV
D

0 2 4 6 8 10 12 14
-5

0

5

10

15

20

R @fmD

H
HR
L
@M

eV
D

• energy surfaces contain localization energy for
relative motion of 8Be and α

• 2+ energy surface depends strongly on orientation
of 8Be 2+ state: K = 2 most attractive

Jπ = 0+ Jπ = 2+

8Be(0+)-α

8Be(2+)-α
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Bound state approximation – Convergence ?
Microscopic α-Cluster Model
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ρ < 6 fm
ρ < 6 fm,
R < 9 fm

ρ < 6 fm,
R < 12 fm

ρ < 6 fm,
R < 15 fm Experiment

E(0+
1
) -89.63 -89.64 -89.64 -89.64 -92.16

E∗(2+
1
) 2.53 2.54 2.54 2.54 4.44

E∗(0+
2
), α(0

+
2
) 8.53 7.82 7.78 7.76 7.65, (8.5± 1.0)10−6

E∗(2+
2
), α(2

+
2
) 10.11 9.18 9.08 8.93 10.13(5), 2.08+0.33

−0.26
[3]

rchrge(0
+
1
) 2.53 2.53 2.53 2.53 2.47(2)

r(0+
1
) 2.39 2.39 2.39 2.39 –

r(0+
2
) 3.21 3.68 3.78 3.89 –

B(E2,2+
1
→ 0+

1
) 9.03 9.12 9.08 9.08 7.6(4)

M(E0,0+
1
→ 0+

2
) 7.20 6.55 6.40 6.27 5.47(9) [2]

B(E2,2+
2
→ 0+

1
) 3.65 2.48 2.09 1.33 1.57+0.14

−0.11
[3]

• properties of resonances (Hoyle state and second 2+ state) can not be
determined in bound state approximation in an unambigouos way

[1] Ajzenberg-Selove, Nuc. Phys. A506, 1 (1990)
[2] Chernykh et al., Phys. Rev. Lett. 105, 022501 (2010)
[3] Zimmermann et al., Phys. Rev. Lett. 110, 152502 (2013); H. Weller, private communication
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Matching to Coulomb asymptotics
Microscopic α-cluster model
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Model Space

• Internal region: 3-α configurations on a grid

• External region: 8Be(0+,2+,4+)-α configurations

• Asymptotically: only Coulomb interaction between 8Be and 4He clusters

GCM basis state expressed in RGM basis

• Microscopic GCM wave functions are functions of single-particle coordinates: internal
wave functions of cluster, the relative motion of the clusters and the total center-of-mass
motion are entangled

• Write GCM basis state in external region with RGM basis states

�
�Ψ

8Be,4He
K;JMπ

(Rj)
�
=
∑

L

®

 L

K 0

�
�
�
�
�

J

K

¸∫

drr2 L(Rj; r)
�
�

8Be,4He
(L)JMπ (r)
�
⊗
�
�cm �

with (π = (−1)L)



ρ, ξ, ξb
�
�

8Be,4He
(L)JMπ (r)
�
=
∑

M ,ML

®

 L

M ML

�
�
�
�
�

J

M

¸

A
∼

¨
δ(ρ− r)

r2


8Be
M
(ξ)

4He(ξb)YLML(ρ̂)

«

• asymptotically RGM states have good channel spin  and orbital angular momentum L

21



Matching to Coulomb asymptotics
Microscopic α-cluster model
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RGM norm kernel and Overlap functions

• RGM norm kernel reflects effects of antisymmetrization, channel c = (L)J

Nc,c′(r, r
′) =


c(r)
�
�c′(r

′)
� r,r′→∞
−→ δcc′

δ(r − r′)

rr′

• Overlap functions can be interpreted as wave functions for point-like clusters

ψc(r) =

∫

dr′r′2 N−1/2
c,c′

(r, r′)


c′(r

′)
�
�Ψ
�

Matching to the asymptotic solution

• Use using multichannel microscopic R-matrix approach
Descouvemont, Baye, Phys. Rept. 73, 036301 (2010)

• Check that results are independent from channel radius: used  = 16.5 fm here

3Α + 8Be-Α

configs

8Be-Α

configs

channel

radius

cluster separation

R

22



Matching to Coulomb asymptotics
Microscopic α-cluster model

Thomas Neff – NAVI Physics Days, Feb 26, 2015

Bound states

• Whittaker functions

ψc(r) = Ac
1

r
W−ηc,Lc+1/2(2κcr), κc =

p

−2μ(E− Ec)

Resonances

• purely outgoing Coulomb, k complex

ψc(r) = Ac
1

r
OLc(ηc, kcr), kc =

p

2μ(E− Ec)

Scattering states

• in- and outgoing Coulomb (incoming channel c0)

ψc(r) =
1

r

�
δLc,L0 Lc(ηc, kcr)− Sc,c0OLc(ηc, kcr)

	
, kc =
p

2μ(E− Ec)

• Diagonal phase shifts and inelasticity parameters: Scc = ηc exp{2δc}

• Eigenphases: S = U−1DU,Dαα = exp{2δα}
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0+ Phase shifts
Cluster Model: 8Be(0+

1
,2+

1
)-α Continuum
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0 2 4 6 8 10
0.0
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E@MeVD

Η
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L

Eigenphaseshifts Phaseshifts Inelasticities

E [MeV] α [MeV]

0+
2

0.29 1.78 · 10−5

0+
3

4.11 0.12

0+
4

4.76 1.57 (?)

Gamow states
• non-resonant background

• strong coupling between 8Be(0+) and
8Be(2+) channel at 4.1 MeV

• Hoyle state missed when scanning the
phase shifts

• stability of broad resonance with respect
to channel radius ?
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2+ Phase shifts
Cluster Model: 8Be(0+

1
,2+

1
)-α Continuum
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Eigenphaseshifts Phaseshifts Inelasticities

E [MeV] α [MeV]

2+
2

1.51 0.32

2+
3

4.31 0.14

. . .

Gamow states • non-resonant background

• L = 2 8Be(0+) and 8Be(2+)
resonances
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4+ Phase shifts
Cluster Model: 8Be(0+

1
,2+

1
)-α Continuum
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Eigenphaseshifts Phaseshifts Inelasticities

E [MeV] α [MeV]

4+
1

1.17 8.07·10−6

4+
2

4.06 0.98

. . .

Gamow states • 41 state (ground state band) very narrow,
missed when scanning phase shifts

• 4+
2
state mostly 8Be(0+) but some mixing
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Including Continuum
Microscopic α-Cluster Model

Thomas Neff – NAVI Physics Days, Feb 26, 2015

ρ < 6 fm
R < 9 fm

ρ < 6 fm
R < 12 fm

ρ < 6 fm
R < 15 fm

ρ < 6 fm
Continuum Experiment

E(0+
1
) -89.64 -89.64 -89.64 -89.64 -92.16

E∗(2+
1
) 2.54 2.54 2.54 2.54 4.44

E∗(0+
2
), α(0

+
2
) 7.82 7.78 7.76 7.76, 3.04 · 10−3 7.65, (8.5± 1.0) · 10−6

E∗(2+
2
), α(2

+
2
) 9.18 9.08 8.93 8.98, 0.46 10.13(5), 2.08+0.33

−0.26

rchrge(0
+
1
) 2.53 2.53 2.53 2.53 2.47(2)

r(0+
1
) 2.39 2.39 2.39 2.39 –

r(0+
2
) 3.68 3.78 3.89 4.08 + 0.07i –

B(E2,2+
1
→ 0+

1
) 9.12 9.08 9.08 9.08 7.6(4)

M(E0,0+
1
→ 0+

2
) 6.55 6.40 6.27 6.15 + 0.01i 5.47(9)

B(E2,2+
2
→ 0+

1
) 2.48 2.09 1.33 2.14 + 1.45i 1.57+0.14

−0.11

• Resonances are calculated as Gamow states

• Matrix elements including resonances are regulated according to Berggren and Gyarmati

• Imaginary part provides information about uncertainty of matrix elements

Berggren, Nucl. Phys. A109, 265 (1968)
Gyarmati, Krisztinkovics, Vertse, Phys. Lett. B41, 475 (1972)
Berggren, Phys. Lett. B373, 1 (1996)
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Strength distributions
Microscopic α-Cluster Model

Thomas Neff – NAVI Physics Days, Feb 26, 2015

• Use real continuum (scattering states)

• Might be the better way to compare to experiment,
especially for broad and overlapping resonances
(background contributions)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
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E @MeVD

dB
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2
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D

12C(γ,α0)
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Zimmermann et al.,
Phys. Rev. Lett. 110, 152502 (2013)✘ E1 transition isospin-forbidden in cluster model !
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Work in Progress:

FMD calculations with 8Be-α continuum

UCOM interaction

• AV18 UCOM(SRG) (α=0.20 fm4, λ=1.5 fm−1)

• Increase strength of spin-orbit force by a factor of two to

partially account for omitted three-body forces

8Be-α Continuum

• To get a reasonable description of 8Be it is essential to include

polarized configurations

➼ Calculate strength distributions

➼ Investigate non-cluster states: non-natural parity states, T = 1
states, M1 transitions, 12B and 12N β-decay into 12C, . . .
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Model space in internal region
FMD

Thomas Neff – NAVI Physics Days, Feb 26, 2015

Model Space

• no assumption of α-clustering

• complete basis not feasible, find the
“most important” basis states

• determine wave packet parameters by variation

VAP, VAP with constraints,
Multiconfiguration-VAP

For each angular momentum (0+, 1+, 2+, . . .)

• VAP: vary energy of projected Slater determinant

P
∼
πP
∼

J

MK

�
�Q(q)
�
with respect to all parameters q

• VAP(R): create additional basis states by variation with a constraint on the radius
of the intrinsic state

• MC-VAP: keep VAP state fix and vary the parameters of a second Slater determinant to
minimize the energy of the second eigenstate in a multiconfiguration mixing calculation

• MC-VAP(R): create additional basis states by adding a constraint on the radius of the
second intrinsic state
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Important Configurations
FMD

Thomas Neff – NAVI Physics Days, Feb 26, 2015

• Calculate the overlap with FMD basis states to find the most important contributions to
the eigenstates
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and 2+

2
states have no rigid

intrinsic structure
FMD basis states are

not orthogonal!
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Spectrum
FMD/Cluster Model: 8Be-α Continuum

Thomas Neff – NAVI Physics Days, Feb 26, 2015
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• FMD provides a reasonable description of the ground state band, the cluster states
related to the Hoyle state and the negative parity states

• Spin-flip states (1+ T = 0,1 and 2+ T = 1) appear to be reasonably well described
although they are somewhat too high in energy

32



Summary

Thomas Neff – NAVI Physics Days, Feb 26, 2015

Unitary Correlation Operator Method

• Explicit description of short-range central and tensor correlations

Fermionic Molecular Dynamics

• Gaussian wave-packet basis contains HO shell model and Brink-type cluster
states

3He(α,γ)7Be Radiative Capture

• Bound states, scattering states, transitions from the continuum

Microscopic cluster model for 12C

• Model space with 3 α and 8Be-α configurations

• Matching with Coulomb continuum, resonances and scattering states

• Hoyle state band build on 8Be(gs)-α

FMD calculations for 12C

• VAP and Multiconfig-VAP in internal region, 8Be-α in external region

➼ Investigate EM and GT transitions to the continuum

➼
8Be-α vs real three-body asymptotics ?
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