DIPOLE EXCITATIONS

A. Horvat¹

NAVI Physics Days GSI, Feb 27, 2015

¹Institut für Kernphysik, TU Darmstadt, Germany (for the R3B-LAND collaboration)

Dipole excitations in the context of astrophysics

s. Goriely, PLB 436 (1998) 10-18

r-process nucleosynthesis

→ photo - deexcitation calculation requires knowledge of B(E1)→ strongly depends on the low-energy tail of GDR

 \rightarrow a low-lying resonant component would increase the rates by factors 10 -100 for some nuclei

Nuclear matter properties and the equation of state

Energy per nucleon of asymmetric nuclear matter

$$E(\rho, \alpha) = E(\rho, 0) + S_2(\rho)\alpha^2 + S_4(\rho)\alpha^4 + \cdots = \frac{N-Z}{N+Z}$$

$$S_2(\rho) = J + L \cdot \frac{\rho - \rho_{sat}}{3\rho_{sat}} + \cdots$$

Dipole polarizability

$$\alpha_D = \tfrac{8\pi}{9} e^2 \sum_{\nu} \omega_{\nu}^{-1} B(E1, \omega_{\nu}) = \tfrac{\hbar c}{2\pi^2 e^2} \int \frac{\sigma_{\gamma}}{\omega^2} d\omega$$

J. Piekarewicz et al., Phys. Rev. C 85 041302(R) (2012)

X. Roca-Maza et al., Phys. Rev. C, 88 024316 (2013)

 \rightarrow ab-initio approach (relatively light nuclei)

 \rightarrow sophisticated shell model techniques (medium mass nuclei, astrophysical applications) \rightarrow self-consistent mean field models (medium heavy to heavy nuclei with many active nucleons)

Relativistic quasiparticle random phase approximation built upon a relativistic Hartree-Bogoliubov ground state (RHB+RQRPA)

 \rightarrow response to an externally applied field (small amplitude limit)

 $\hat{F}(t) = \hat{F}e^{-i\omega t} + h.c.$

 \rightarrow discrete RPA energies, corresponding transition probabilities

$$B(EJ; J_i
ightarrow J_f) = rac{1}{2J_i+1} |\langle J_f || \hat{Q}_J || J_i
angle |^2$$

 \rightarrow Parameters of the effective interaction can be varied to reproduce values of J and L spanning a selected range

(parametrization from D. Vretenar, T. Nikšić, P. Ring, Phys. Rev. C 68, 024310 (2003))

 \rightarrow Heavier tin isotopes exhibit a stronger sensitivity to varying L

Stable nuclei

 \rightarrow real photon scattering (NRF,experiments using bremsstrahlung, laser Compton back-scattering, tagged photons) (isovector probe)

 \rightarrow hadronic probes \rightarrow inelastic proton scattering (isovector probe)

 \rightarrow inelastic α , ion scattering (O¹⁷) (isoscalar probe)

Stable nuclei - pygmy region

 \rightarrow ¹²⁴Sn, ¹³⁸Ba and ¹⁴⁰Ce \rightarrow complex isospin structure of the low-lying states \rightarrow splitting in two groups, one sensitive to the isovector probe only and other to both probes

 \rightarrow ⁴⁸Ca \rightarrow states with isovector, isoscalar and mixed character, no splitting in energy

Stable nuclei - entire spectra and dipole polarizability

Electromagnetic excitation by a 295 MeV polarized proton beam at RCNP, Osaka \rightarrow data in good agreement with previous photo-absorption and photo-neutron cross-section measurements

 \rightarrow the J - L relationship extracted $L = -146 \pm (1)_{theor} + (6.11 \pm (0.18)_{expt} \pm (0.26)_{theor})J$ =0.96(MeV fm³ DD-ME Skyrme SAMi $10^{-2} \alpha_{\mathrm{D}} J$ 2040 60 80 100 120 140 L (MeV)

X. Roca-Maza et al., Phys. Rev. C, 88 024316 (2013)

Radioactive nuclei - inverse kinematics with radioactive beams

Towards systematic investigation of the evolution of dipole strength with increasing isospin asymmetry

experiments performed on neutron rich tin isotopes with complementary probes

- $\rightarrow (\alpha, \alpha' \gamma)$, inverse kinematics @RIBF, Oct 2014
 - scattering of a 200 MeV/u $^{128,132}\mathrm{Sn}$ beam off a liquid helium target
 - gamma detection by DALI2 array and 8 large volume $LaBr_3(Ce)$ detectors in forward direction
 - scattered heavy ions detected by the zero degree spectrometer

 \rightarrow Coulomb excitation (heavy ion induced electromagnetic excitation) of $^{124-134}{\rm Sn}$ at the R3B-LAND setup @GSI

 \rightarrow for b>R virtual photon scattering takes place \rightarrow B(E1) extraction, therefore α_D

 \rightarrow for b < R the nuclear interaction takes place \rightarrow possibility of extracting the neutron skin thickness from total reaction and charge changing cross section

 \rightarrow Excitation energy from a kinematically complete determination of all reaction products

 \rightarrow Cross section for Coulomb induced nuclear breakup reactions

$$\frac{d\sigma(E)}{dE} = \frac{16\pi^3}{9\hbar c} n_{E1}(E) \frac{dB}{dE}(E1, 0 \rightarrow J, E)$$

D.M. Rossi et al., Phys. Rev. Lett. 111, 242503 (2013)

 \rightarrow Integrated from the neutron emission threshold

 \rightarrow If extrapolated above and below integration limit, compared to ^{208}Pb result and RHB+QRPA calculations with DD-ME

R3B@FAIR, neutron detection

 $\mathrm{FAIR} \rightarrow \mathrm{isotopes}$ up to $^{140}\mathrm{Sn}$ and unstable Pb isotopes available

- \rightarrow Low neutron emission thresholds \rightarrow multi-neutron decays
- \rightarrow Need to resolve 4 neutron hits in coincidence, improved neutron detection

LAND \rightarrow Plastic scintillator + iron converter $\rightarrow 200 \mod les$ $200 \times 10 \times 10 \ cm$ $\rightarrow \sigma_t = 250 ps,$ $\sigma_{x,y,z} = 3 cm$ \rightarrow limited multi-neutron hit reconstruction capacity

NeuLAND \rightarrow Purely scintillator material \rightarrow 3000 modules 250x5x5 cm arranged in double planes, vertical + horizontal orientation $\rightarrow \sigma_t < 150\rho s,$ $\sigma_{x,y,z} < 1.5cm$ \rightarrow Will be able to resolve 4n hits with 60% accuracy

R3B@FAIR, neutron detection

 \rightarrow 4 double planes completed, tested in Oct 2014 \rightarrow $^{48}\mathrm{Ca}$ beam @ 550 MeV/u on carbon target

 \rightarrow Timing resolution for crossed bars in one double plane

$$\sigma_{75-25} = 133 ps \rightarrow \sigma_t = 94 ps$$

 \rightarrow Transported to RIBF in Jan 2015

 \rightarrow Appended to NEBULA neutron detector of the SAMURAI setup

 \rightarrow Awaiting physics experiments in the next appointed SAMURAI beam time

Summary

 \rightarrow Dipole excitation spectra contain valuable information on nuclear structure properties related to isospin asymmetry

 \rightarrow Many open questions to be addressed by the next generation experimental programs on dipole excitations (at R3B, S-DALINAC, RIBF, RCNP, ...)

- Systematics of the dipole strength evolution with increasing isospin asymmetry
- ► Isospin character of the low-lying dipole mode
- Investigating the E1 response both below and above particle emission threshold
- Providing more stringent constraints on the density dependence of the symmetry energy

Thank you for your attention