Measurement of the Coulomb dissociation cross section of the neutron rich nitrogen isotopes ^{20,21}N

Marko Röder

NAVI Meeting February 2015, Darmstadt

Supported by GSI F&E (DR-ZUBE), NupNET NEDENSAA (05 P09 CRFN5), Plattform für Detektortechnologie und -systeme

HELMHOLTZ | ZENTRUM DRESDEN | ROSSENDORF

Member of the Helmholtz Association Marko Röder I Institut für Strahlenphysik I www.hzdr.de

Nucleosynthesis

Astrophysical Motivation

How were the chemical elements created?

- elements up to iron by fusion in Big Bang and stars
- heavier elements by neutron capture processes
 - slow (s-process): discrepancies with observations
 - rapid (r-process): its path involves nuclei far away from the valley of stability (¹⁴N, ¹⁵N are stable)
- ${}^{20}N(\gamma,n){}^{19}N$ studied to extract cross sections of ${}^{19}N(n,\gamma){}^{20}N$ via time inversion
- core-collapse supernova with neutrino driven wind scenario (Takahashi et al. 1994)
- Big Bang nucleosynthesis (Rauscher et al. 1994)

200	210	220
13.51 S	3.42 S	2.25 S
β-: 100.00%	β-: 100.00%	β-: 100.00% β-n < 22.00%
19N	20N	21N
271 MS	130 MS	85 MS
β-: 100.00%	β-: 100.00%	β-: 100.00%
β-n: 54.60%	β-n: 57.00%	β-n: 81.00%
18C	19C	20C
92 MS	49 MS	14 MS
β-: 100.00%	β-n: 61.00%	β-: 100.00%
β-n: 31.50%	β-	β-n: 72.00%

Coulomb Dissociation of ^{20,21}N

Marko Röder I Institut für Strahlenphysik I www.hzdr.de

DRESDEN

TECHNISCHE UNIVERSITÄT

Impact of Light Neutron Rich Nuclei to r-process Abundance

M. Terasawa et al. (2001):

"[...] We find that a new nuclear reaction flow path opens in the very light, neutron-rich region. This new nuclear reaction flow can change the final heavy-element abundances by as much as an order of magnitude. [...]"

GSI Accelerator Facility

Member of the Helmholtz Association Marko Röder I Institut für Strahlenphysik I www.hzdr.de

Coulomb Dissociation

LAND/R3B Setup

- kinematically complete measurement
- measure all outgoing particles

20<mark>ъ</mark>

Marko Röder I Institut für Strahlenphysik I www.hzdr.de

photon

Incoming Particle Identification

Member of the Helmholtz Association

Marko Röder I Institut für Strahlenphysik I www.hzdr.de

Identifying Charge of outgoing Fragment

Member of the Helmholtz Association Marko Röder I Institut für Strahlenphysik I www.hzdr.de

Measured Gamma Spectrum ${}^{20}N(\gamma,n){}^{19}N$

D. Sohler, et al., 2008, PRC 77, 044303 at GANIL, in-flight spectra with Dopplercorrection, Addback, Ge-detector, E(³⁶S)=77.5MeVA

Total Excitation Energy Spectrum ${}^{20}N(\gamma,n){}^{19}N$

Coulomb Dissociation of ^{20,21}N

Marko Röder I Institut für Strahlenphysik I www.hzdr.de

Total Excitation Energy Spectrum ${}^{20}N(\gamma,n){}^{19}N$

Marko Röder I Institut für Strahlenphysik I www.hzdr.de

Coulomb Dissociation of ^{20,21}N

Excitation Energy Spectrum ${}^{20}N(\gamma,n){}^{19}N$

Ground State E(γ,sum)<0.7MeV

First Excited State (1141keV)

Coulomb Dissociation of ^{20,21}N

Marko Röder I Institut für Strahlenphysik I www.hzdr.de

Cross Section ${}^{20}N(\gamma, n){}^{19}N$

Uncertainties

- statistical uncertainty
- LAND efficiency 6%
- Crystal Ball eff. 5%
- incoming particle identification

$\sigma_{_{CD}}(total)$	= $(96 \pm 12^{\text{stat}} \pm 4^{\text{InPID}} \pm 6^{\text{LAND}})$) mb
$\sigma_{_{CD}}$ (all excited)	= $(80 \pm 10^{\text{stat}} \pm 2^{\text{InPID}} \pm 5^{\text{LAND}} \pm 5^{\text{CB}}$) mb
$\sigma_{_{CD}}$ (ground state)	= $(16 \pm 15^{\text{stat}} \pm 1^{\text{InPID}} \pm 1^{\text{LAND}} \pm 1^{\text{CB}})$) mb
$\sigma_{_{CD}}(1st \text{ excited state})$	= $(28 \pm 5^{\text{stat}} \pm 2^{\text{InPID}} \pm 2^{\text{LAND}} \pm 2^{\text{CB}}$) mb

Marko Röder 1 Institut für Strahlenphysik 1 www.hzdr.de

Photo Absorption Cross Section

$$\sigma_{\gamma,n} \equiv \sigma_{E1}^{\text{photo}} = \frac{d\sigma_{CD}}{dE^*} \frac{1}{n_{E1}(E^*)} E^* \qquad \qquad E_{\gamma} = E^*$$

 $\sigma[^{20}N(\gamma,n)^{19}N^{g.s.}] < 9.2 \text{ mb}$ for E^{*} = (0 MeV, 15 MeV); 90% confidence level

Invariance under time reversal via principle of detailed balance

Neutron Capture Cross Section

$$\sigma_{n,\gamma} = \frac{2(2J_A + 1)}{(2J_{A-1} + 1)(2J_n + 1)} \frac{k_{\gamma}^2}{k_{c.m.}^2} \sigma_{\gamma,n} \qquad \qquad \begin{aligned} k_{\gamma} &= E^*/(\hbar c) \\ k_{c.m.}^2 &= 2\mu(E^* - S_{1n})/\hbar^2 \\ \mu &= (M_{^{19}\text{N}} \cdot M_{\text{n}})/(M_{^{19}\text{N}} + M_{\text{n}}) \end{aligned}$$

 $\sigma[^{19}N^{g.s.}(n,\gamma)^{20}N] < 0.24 \text{ mb}$ for E^{*} = (0 MeV, 15 MeV); 90% confidence level

Maxwellian Average Reaction Rates

Scaled to theoretic data

¹⁹N[g.s.] $(n,\gamma)^{20}$ N ¹⁹N[1st excited state] $(n,\gamma)^{20}$ N including population probability ¹⁹N $(n,\gamma)^{20}$ N upper limit of g.s. and 1st excited state transitions ¹⁹N $(n,\gamma)^{20}$ N Rauscher et al. 1994 (theoretic)

$^{21}N(\gamma, n)^{20}N$

Member of the Helmholtz Association Marko Röder I Institut für Strahlenphysik I www.hzdr.de

Coulomb Dissociation of ^{20,21}N

Measured Gamma Spectrum ${}^{21}N(\gamma,n){}^{20}N$

D. Sohler, et al., 2008, PRC 77, 044303 at GANIL, in-flight spectra with Dopplercorrection, Addback, BaF₂, E(³⁶S)=77.5MeVA

Total Excitation Energy Spectrum ${}^{21}N(\gamma,n){}^{20}N$

Partial Contributions

dσ^{total} / dE* [mb / MeV] $d\sigma_{CD}^{total}$ / dE* [mb / MeV] EM + Nuclear 25 25 **Nuclear Contribution** 20 20 15 15 10 10 5 0 0 -5 -5 -10 -10 2 6 8 12 16 18 20 2 6 8 18 20 14 16 E* [MeV] E* [MeV] Page 19 Member of the Helmholtz Association

Marko Röder I Institut für Strahlenphysik I www.hzdr.de

Coulomb Dissociation Cross Section

Coulomb Dissociation of ^{20,21}N

Total Excitation Energy Spectrum $^{21}N(\gamma, n)^{20}N$

Coulomb Dissociation of 20,21N

Maxwellian Average Reaction Rates

^AN[g.s.] $(n,\gamma)^{A+1}N$ ^AN[1st excited state] $(n,\gamma)^{A+1}N$ including population probability ^AN $(n,\gamma)^{A+1}N$ upper limit of g.s. and 1st excited state transitions ^AN $(n,\gamma)^{A+1}N$ Rauscher et al. 1994 (theoretic)

Cross Section ${}^{21}N(\gamma, n){}^{20}N$

$\sigma_{_{CD}}(total)$	$= (84 \pm 12^{\text{stat}} \pm 5^{\text{inPID}} \pm 5^{\text{LAND}})$) mb
$\sigma_{_{CD}}(all excited)$	= $(53 \pm 9^{\text{stat}} \pm 0^{\text{inPID}} \pm 3^{\text{LAND}} \pm 3^{\text{CB}}$) mb
$\sigma_{_{CD}}(\text{ground state})$	= $(31 \pm 15^{\text{stat}} \pm 5^{\text{inPID}} \pm 2^{\text{LAND}} \pm 2^{\text{CB}}$) mb

Photo Absorption Cross Section

 $\sigma[^{21}N(\gamma,n)^{20}N^{g.s.}] < 10.8 \text{ mb}$ for E^{*} = (0 MeV, 15 MeV); 90% confidence level

Neutron Capture Cross Section

 $\sigma[^{20}N^{g.s.}(n,\gamma)^{21}N] < 0.13 \text{ mb}$ for E^{*} = (0 MeV, 15 MeV); 90% confidence level

Marko Röder 1 Institut für Strahlenphysik 1 www.hzdr.de

Summary

- Measured astrophysically relevant reaction via time inversion by principle of detailed balance
- Coulomb Excitation Cross Section for ²⁰N(γ,n)¹⁹N
 - $\sigma_{CD}(\text{total}) = 96 \text{ mb}, u_{\text{stat}} = \pm 12 \text{ mb}, u_{\text{sys,inPID}} = \pm 4 \text{ mb}, u_{\text{sys,LAND}} = \pm 6 \text{ mb}$
- Neutron Capture Cross Section: σ [²⁰N(γ ,n)¹⁹N^{g.s.}] < 9.2 mb
- Coulomb Excitation Cross Section for ${}^{21}N(\gamma,n){}^{20}N$
 - $\sigma_{CD}(\text{total}) = 84 \text{ mb}, u_{\text{stat}} = \pm 12 \text{ mb}, u_{\text{sys,inPID}} = \pm 5 \text{ mb}, u_{\text{sys,LAND}} = \pm 5 \text{ mb}$
- Neutron Capture Cross Section: σ [²⁰N^{g.s.}(n, γ)²¹N] < 0.13 mb
- Discussion & Outlook
 - include in Reaction Network Code for impact on r-process abundance
 - repeat with higher statistics (FAIR)

Marko Röder I Institut für Strahlenphysik I www.hzdr.de