Energy loss along ion trajectory

1000-MeV Xe v = 10% c range ~50 µm flight time ~10⁻¹² s

Christina Trautmann, GSI Helmholtzzentrum & Technische Universität Darmstadt

65ì

Ion - solid interaction

1-GeV Xe ion v = 10% c range ~50 µm flight time ~10⁻¹² s

49 µm collisions with electrons excitation and ionization 1 μm elastic collisions with atoms

electron cascade

Christina Trautmann, GSI Helmholtzzentrum & Technische Universität Darmstadt

high energies (MeV-GeV)

- minimal scattering → parallel tracks
- each ion produces cylindrical track
- track size scales with dE/dx
- track formation depends on material
- elastic collision cascade (energy & momentum conservation)
 weak materials dependence
 important parameter ->

low energies (keV)

displacement energy E_d

electronic stopping

nuclear stopping

energy transfer from electronic to atomic system → material sensitivity

<u>Warning</u>: dpa is no helpful parameter for damage creation with MeV-GeV ions!!

4

Nuclear and electronic energy loss

Track size increases with electronic stopping power
 Track size insulators > semiconductors > metals
 Materials sensitivity scales with dE/dx threshold

Track formation depends on materials nature

high sensitivity		low sensitivity
dE/dx threshold ~1 keV/nm	~20 keV/nm	~50 keV/nm
insulators	<u>semi-conductors</u>	<u>metals</u>
polymers	amorphous Si, Ge	amorphous alloys
oxides, spinels	GeS, InP, Si _{1-x} Ge _x	Fe, Bi, Ti, Co, Zr
ionic crystals	- Si, Ge	- Au, Su, Ag,
- diamond	no tracks	

Track formation in metals

metals are rather insensitive due to

- large number of conduction electrons
- very mobile electrons
- large thermal conductivity

no tracks: Nb, Cu, Ni, Nb, Pd, W, Ag, Pt, Au

tracks:

pure metals: Fe, Ti, Co, Zr, Bi compounds: NiB, FeCrNi, TiNi, etc metallic glasses: PdSi, FeB, etc

track observation in metals rather difficult (no amorphisation, no optical defects,...)

Tracks in metals (Ti)

transmission electron microscopy

dotted tracks in Ti

Dunlop et al. NIM B 112 (1996)

Tracks in metals (NiTi)

homogeneous cylindrical tracks amorphization of martensitic NiTi phase no tracks induced in austenitic phase

Barbu et al., NIMB 145 (1998)

Thermal spike model

inelastic thermal spike or two-temperature model sudden temperature rise in a cylinder around ion trajectory

energy diffusion within electron system
 energy transfer to atoms
 energy diffusion within atomic system

description in cylindrical geometry with z-axis = ion trajectory

thermalisation in space and time!

Christina Trautmann, GSI Helmholtzzentrum & Technische Universität Darmstadt

Track formation & thermal spike model

two differential equations coupled via g

electrons

$$C_{e}(T_{e})\frac{\partial T_{e}}{\partial t} = \frac{1}{r}\frac{\partial}{\partial r}\left[rK_{e}(T_{e})\frac{\partial T_{e}}{\partial r}\right] - g(T_{e} - T_{a}) + A(r[\alpha_{R}], t)$$

$$C_{a}(T_{a})\frac{\partial T_{a}}{\partial t} = \frac{1}{r}\frac{\partial}{\partial r}\left[rK_{a}(T_{a})\frac{\partial T_{a}}{\partial r}\right] + g(T_{e} - T_{a})$$

atoms

important parameters

- specific heat $C_e(T)$ and thermal conductivity $K_e(T)$ of electron system
- specific heat $C_a(T)$ and thermal conductivity $K_a(T)$ of atomic system
- g electron phonon coupling
- latent heat

track formation \rightarrow melting depends on C_{e,a}(T), K_{e,a}(T), g, T_m

track formation criteria: molten radius = track

S_c in metals under sw $\eta > 1 \rightarrow$ melting is possible 6745

Table 4. Prediction of S_e sensitivities for some selected metals ΔH_1 is the energy required to melt a metal, Se is the maximum value that can be factor is a mean value and λ is the electron mean fi S_c values that have been used in experiments.

ched in irradiations. The n-r coupling path. The S_e^* values are the maximum

Metal	$\Delta H_{\rm f}$ (J cm ⁻³)	$S_{\rm c}$ (TRIM91) (keV nm ⁻¹)	g (×10 ¹¹) (W cm ⁻³ K ⁻¹)	λ (10 ⁷ cm)	η	S _e effect	Measured S ₁ effect
Be	9368	23	293	3.92	5.2	Yes	
Mg	2270	20	6.82	21.6	0.61	No	
AL	3275	28	8.14	20.9	0.63	No	No [381
							Set 5, 15 keV/mor
Ti	6701	42	92.8	614	5.4	Yes	Yes [22]
v	8907	52	66.4	7.56	3.3	Yes	
Cr	9075	63	94.0	6.51	5.3	Yes	
Mn	7042	63	444	2.98	32	Yes	
Fe	10977	70	49.8	8.97	2.6	Yes	Yes [13]
Co	12 199	75	34.5	10.9	17	Yes	Yes [22]
Ni	10529	77	40.5	10.1	2.2	Yes	No [13, 17]
							ST < 67 keV nm ⁻¹
Cu	6895	73	4.94	28.5	0.42	No	No [13]
							$S_{\rm c}^{*} \leqslant 65~{\rm keV}~{\rm nm}^{-1}$
Ga	1061	46	19.6	13.3	81	Yes	Yes [23]
Zr	4873	48	35.0	9.55	3.5	Yes	Yes [22]
Nb	9074	63	15.0	15.2	0.97	No	No [13]
							$S_{*}^{1} < 62$ keV nm ⁻¹
Pd	7616	81	13.9	16.4	13	Yes?	No [17]
							$S_{\rm e}^{\rm r} < 75~{\rm keV}~{ m nm}^{-1}$
Ag	4118	70	1.26	53.1	0.19	No	No [13, 17]
5 a.2 (5a.)							$S_{*}^{*} \leq 68 \text{ keV nm}^{-1}$
Sn	1184	45	3.69	28.7	1.5	Yes	
w	14011	93	12.4	17.0	0.74	No	No [17]
							$S_{n}^{*} < 80 \text{ keV} \text{ nut}^{-1}$
Pr	9003	109	10.3	18.9	11	No	No [13]
	1.00000001.0						$S_{\rm c}^* \approx 90~{\rm keV}~{\rm nm}^{-1}$
Au	4443	99	0.91	62.5	0.18	No	
Pb	1109	55	1.56	43.3	0.85	No	
Bi	1136	50	8 20	18.4	4.2	Yes	Yes [124
u	3149	95	12.4	16.3	3.7	Yes	858813 Y

Thermal Spike calculations

experiments

14

Wang et al., J. Phys. : Condens. Matter 6 (1994) 6733

Thermal spike model

Criticism and limitations:

- short time scales \rightarrow no equilibrium conditions
- short length scales \rightarrow macroscopic material parameters
- assumes free electron diffusion for insulators
- ignores holes
- neglects recrystallization processes

Combine thermal spike model & MD calculations

How to estimate radiation damage due to highenergy ion beams

- model temperature increase along ion path due to electronic stopping
- use temperature as input to MD code
- model damage creation / track formation by combining nucl & elec stopping
- simulate defect annealing processes at elevated temperature

