

Swift Heavy Ions – Induced Radiation Damage in Graphite

M. Tomut

GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt

Highly Oriented Pyrolytic Graphite

Heavy ion induced tracks in graphite (HOPG)

STM (HOPG)

U (2710 MeV), at 300 K

Liu et al, PRB 64 (2001) 184115

TEM (natural graphite)

Pb (850 MeV), at 90 K

Dunlop et al, PRB 76 (2007) 155403

Raman spectra of graphite

Sensitive to in-plane vacancy type defects

SHI - induced damage in HOPG- Raman spectroscopy

Large increase in damage at fluences where tracks strongly overlap - vacancy clustering

SHI - induced damage in HOPG- Raman spectroscopy

Fluence evolution of Raman graphitic indices in HOPG

0

- 1. Annealing of intrinsic defects
- 2. Bending of graphitic planes
- 3. Nanostructuring of basal planes

Fair

 Disordering, cross-linking of graphitic planes(accompanied by strong hardeningindentation measurements)

- La in-plane coherence length
- Leq/La characterizes tortuosity of graphitic planes

Raman depth profiling of damage in HOPG by succesive cleaving

Raman depth profiling of damage in HOPG by succesive cleaving

Raman depth profiling of damage in HOPG by succesive cleaving

Graphitic layers tortuosity evolution with depth

Positron annihilation spectroscopy

PLEPS source at FRM II

PLEPS - Pulsed Low Energy Positron system Beam energy at sample position: E = 0.2-18 keVTypical measurement time per spectrum: DBS: 20 min

11

Vacancy clusters in SHI irradiated HOPGpositron annihilation

Mechanism of bending of graphitic layers

Unrelaxed vacancy clusters in graphite

V6 disc

Optimised vacancy clusters in graphite Formations of pentagons and octagons

V4 boat

V4 disc

V6 disc

A.A. El-Barbary, Ph.D. Thesis

Polycrystalline isotropic graphite

XRD Characterization of Radiation Damage in Graphite Induced by GeV heavy ions

Wavelength: 0,29135Å Beam spot: 2x2mm

Fluence series: 10¹¹ to 10¹⁴ ions/cm² Sample: fine grained isotropic graphite Flux: 10¹⁰ ions /cm² s Energy: 3,6MeV/u

Depth profiling of defects in polycrystalline grapite by Raman investigation on sample cross-section

Fine-grained isotropic graphite exposed to 1x10¹³ ²³⁸U ions/cm², 11.1 MeV/u

Specific structural changes induced by SHI in graphite

Electronic stopping

Ammar et. al, Carbon, 2010

Elastic collisions

Depth profiling of defects in isotropic graphite using Raman graphitic indices

lb/lg with depth

Depth profiling of mechanical properties of U irradiated isotropic graphite- nanoindentation

Hardness with depth

•Strong hardening on the surface

Fullerenes Nanotubes and Carbon Nanostructures, 2012

•Hardness and Young modulus lower than virgin at the interface irrad./nonirrad. due to residual elastic stresses

Raman spectrum taken in in cross section on "fresh" U irradiated isotropic graphite

XRD along ion trajectory

Swift heavy ion -induced property degradation of isotropic graphite

Ion- induced swelling and creep?

Irradiation- induced stress

Hardening and embrittlement of ion- irradiated graphite

Nanoindentation testing of irradiated graphite

Cube Corner 20 mN max load; comparison pristine and irradiated samples

Ion-induced thermal diffusivity degradation of graphite

Comparison U vs Xe irradiation for isotropic graphite

Summary

- For HOPG-defects produced by SHI in graphite in the region dominated by electronic stopping-less efficient than in the nuclear stopping regime
- I ncreased sensitivity of the surface to damage creation via electronic stopping
- SHI irradiation of isotropic graphite induces a hard disordered sp2 phase in the electronic stopping range-fullerene-related structures in the track core?
- For smaller crystallite (polishing)- SHI induced damage is more efficient due to the confinement of energy deposition

Acknowledgements

EuCard project

TU Darmstadt:

C. Hubert, M. Krause, K. Kupka

Universität der Bundeswehr München: C.L. Ravelli, W. Egger

University of Latvia, Institute of Solid State Physics, Riga : I. Manika, J. Maniks, R. Zabels

Thank you for your attention!

