DPA calculations with FLUKA

A. Lechner, L. Esposito, P. Garcia Ortega, F. Cerutti, A. Ferrari, E. Skordis on behalf of the FLUKA team (CERN)

with valuable input from

R. Bruce, P.D. Hermes, S. Redaelli (CERN) and N. Mokhov (FNAL)

2nd EuCARD2 ColMat-HDED annual meeting $\label{eq:Dec 5th} \text{Dec 5}^{\mathrm{th}},\,2014$

EUCARD

1/20

Dec 5th 2014

(日)

1 Introduction

- 2 FLUKA and DPA
- 3 DPA in LHC primary collimators (IR7) due to halo particles (preliminary)
- OPA in HL-LHC inner triplet magnets (IR1/5) due to proton collision debris
- 5 Summary

Radiation transport in matter ... stochastic in nature

FLUKA

- Hadron-nucleus interactions
- Nucleus-Nucleus interactions
- Electron interactions
- Photon interactions
- Muon interactions (inc. photonuclear)
- Neutrino interactions
- Decay
- Low energy neutrons

- Ionization
- Multiple scattering
- Combinatorial geometry
- Voxel geometry
- Magnetic field
- Analogue or biased
- On-line buildup and evolution of induced radioactivity and dose

LHC beam-machine interaction studies: from beam losses to secondary shower description

FLUKA is regularly used at CERN to perform LHC beam-machine interaction simulations in the context of

- machine protection
- collimation
- BLM threshold settings
- high-luminosity upgrade
- design studies for new devices (absorbers etc.)
- radiation to electronics (R2E project)
- activation studies
- background to experiments
- ..

Types of LHC beam losses simulated with FLUKA – both, normal and accidental ...

- Iuminosity production in experiments
- halo collimation
- injection and extraction failures
- residual gas in vacuum chamber
- dust particles falling into beam
- ...

Main focus of this presentation

DPA calculations with FLUKA (incl. examples)

Validation of dose calculations for TeV proton losses (controlled beam loss experiments)

- FLUKA is based, as far as possible, on well benchmarked microscopic models
- However, first years of LHC operation also allowed to validate FLUKA dose predictions against Beam Loss Monitors (BLMs) measurements
- BLMs measure dose from secondary showers in machine elements (magnets, collimators, etc.)
- Several thousand BLMs are installed around the ring (ICs, filled with N₂ gas, about 1500 cm² active vol.)

Losses induced by beam wire scanner (p@3.5 TeV)

- Quench test 2010 in LHC IR4 (M. Sapinski et al.)
- Wire scans: showers due to collision products registered in BLMs installed on downstream magnets (${\sim}35$ from wire scanner)

[†] FLUKA simulations based on MAD-X loss distribution from V. Chetvertkova et al.

Direct losses on MQ beam screen[†] (p@4 TeV)

- Quench test 2013 in arc sector 56 (A. Priebe et al.)
- Proton losses on beam screen (over ${\sim}1.5\,\text{m})$ by means of orbit bump/beam excitation, dose measured by BLMs outside of MQ cryostat

< ロ > < 同 > < 回 > <

A. Lechner (CERN)

 \mathbf{r}^2

Introduction

2 FLUKA and DPA

- **3** DPA in LHC primary collimators (IR7) due to halo particles (preliminary)
- OPA in HL-LHC inner triplet magnets (IR1/5) due to proton collision debris

FLUKA and DPA in a nutshell

- DPA can be induced by all particles produced in the hadronic cascade
- displacement damage related to energy transfers to atomic nuclei

continued from previous page:

Charged particles (incl. heavy ions)	
Particle falls below transport threshold	Nuclear stopping power integrated (using Lindhard partition function)
Elastic and inelastic en- counters	Recoils and secondary charged particles explicitly produced if their energy lies above transport threshold (i.e. they become a projectile), otherwise they are treated as below threhold.

Neutrons	
\leq 20 MeV 1	DPA is based on (un)restricted NIEL as provided by NJOY
> 20 MeV	recoils: same as for elastic and inelastic encounters of charged particles

¹For \leq 20 MeV neutron transport, FLUKA uses multi-group approach (group-to-group scattering probabilities from NJOY).

Introduction

2 FLUKA and DPA

3 DPA in LHC primary collimators (IR7) due to halo particles (preliminary)

0 DPA in HL-LHC inner triplet magnets (IR1/5) due to proton collision debris

Estimating DPA in LHC primary collimators (made of AC150)

- Two step simulation:
 - Spatial distribution of inelastic proton-nucleus collisions in collimators is derived by means of multi-turn tracking simulations (using FLUKA-Sixtrack coupling, in collaboration with LHC collimation team)
 - Starting from this loss distribution, the DPA distribution is calculated in detailed (low-cut) FLUKA shower calculations in jaw of TCP.C6L7
- Note:
 - By starting from the spatial distribution of inelastic collisions, we neglect the DPA contribution of primary protons before the collision
- Assumptions for DPA calculations:
 - beam energy of 7 TeV
 - o horizontal losses only
 - annual beam losses of 1.15×10¹⁶ protons
 - \rightarrow corresponding to 40 fb⁻¹ in 2012
 - $\rightarrow\,$ one needs to apply approximately a factor 100 to get an estimate for HL-LHC lumi goal (4000 fb^{-1})

Spatial distribution of inelastic proton collisions in the horizontal TCP

Tracking results from P. Garcia Ortega.

A. Lechner (CERN)

DPA in TCP jaws (1.15×10¹⁶ protons lost) – preliminary results

Anatomy of DPA predictions in TCP jaw - preliminary results

contribution:	contribution:
62%	lons above transport threshold (>250 eV/nuc)
	\rightarrow explicitly generated recoils
20%	Pions above transport threshold $(>1 \text{keV})$
5-6%	Protons above transport threshold $(>1 \text{keV})$
5-6%	lons below transport threshold ($<\!250eV/nuc$)
	\rightarrow non-transported recoils
6-7%	Electrons above transport threshold ($>500 \text{keV}$)
<0.5%	Others

Percentage values rounded; (statistical) error of contributions: ${\sim}1\%$

(日)

EUCARD

・ロト ・回 ト ・注 ト ・注

Dec 5th. 2014

EUCARD²

14 / 20

Contents

Introduction

- 2 FLUKA and DPA
- **3** DPA in LHC primary collimators (IR7) due to halo particles (preliminary)
- OPA in HL-LHC inner triplet magnets (IR1/5) due to proton collision debris

D1

70

70

80

80

D1

HL-LHC (inner triplet and D1 in IR1/5): FLUKA models and brief recap of layout

rD

Peak DPA and NIEL in coils of triplet quadrupoles, correctors and D1 (3000 fb^{-1})

< 17 ▶

Peak fluences in coils of triplet quadrupoles and D1 (3000 fb^{-1})

Neutrons in coils:

- max. fluence: $1.8 \times 10^{17} \text{ cm}^{-2}$
- correlation peak neutron fluence – peak DPA
- see anatomy of DPA calculations in next page

Transp. cut:	
photons	100 keV
e^-/e^+	500 keV
neutrons	$10^{-5} \mathrm{eV}$
ions	0.25 keV/nucl
other	1 keV

EUCARD²

・ロト ・日 ・ ・ ヨ ・ ・

Anatomy of DPA predictions in Q1

Contributions to DPA maximum in Q1:

 Dominated by lowenergy neutrons (for which FLUKA relies on NJOY-based values for DPA)

Peak DPA contribution:	Type of contribution:
70.7%	Neutrons <20 MeV (NJOY)
24.4%	lons above transport threshold
	(>250 eV/nucleon)
	\rightarrow explicitly generated recoils (from neutron, proton, etc. interactions)
1.7%	Protons above transport threshold $(>1 \text{keV})$
1.6%	lons below transport threshold
	(<250 eV/nucleon)
	\rightarrow non-transported recoils
1.0%	Electrons above transport threshold ($>500 \text{ keV}$)
0.6%	Pions above transport threshold $(>1 \text{keV})$
<0.1%	Others

Percentage values rounded; (statistical) error of contributions: few 0.1%

EUCARD²

Introduction

- 2 FLUKA and DPA
- 3 DPA in LHC primary collimators (IR7) due to halo particles (preliminary)
- OPA in HL-LHC inner triplet magnets (IR1/5) due to proton collision debris

EUCARD

20 / 20

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ

Dec 5th. 2014

- FLUKA offers a powerful way to calculate DPA for beam losses as encountered in the LHC operational environment or during beam tests
 - In particular, allows to take into account the contribution of different particle types, including all particles produced in the particle shower development
- DPA estimates for horizontal primary collimator (preliminary):
 - $\circ~$ Simulation predicts a peak DPA of 3×10^{-3} for ${\sim}40\,{\rm fm}^{-1}$ aka 1×10^{16} protons lost (or ${\sim}0.3$ for ${\sim}4000\,{\rm fm}^{-1}$)
 - o Predominant contribution comes from recoils
 - However, present calculations still neglect contribution of primary protons before they have an inelastic interaction
- DPA estimates for HL-LHC proton collision debris impacting on triplet magnets (IR1/5):
 - FLUKA predicts max. DPA of $\sim 1.8 \times 10^{-4}$ in Q1 coils for 3000 fm^{-1}
 - Dominant contribution due to neutrons <20 MeV (fluence up to $1.8 \times 10^{17} \text{ cm}^{-2}$)