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Introduction

Radiation transport in matter ... stochastic in nature
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Introduction

LHC beam-machine interaction studies: from beam losses to secondary shower description

FLUKA is regularly used at CERN to perform LHC
beam-machine interaction simulations in the context of

machine protection

collimation

BLM threshold settings

high-luminosity upgrade

design studies for new devices (absorbers etc.)

radiation to electronics (R2E project)

activation studies

background to experiments

...

Types of LHC beam losses simulated with
FLUKA – both, normal and accidental ...

luminosity production in experiments

halo collimation

injection and extraction failures

residual gas in vacuum chamber

dust particles falling into beam

...

Main focus of this presentation

• DPA calculations with FLUKA (incl. examples)
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Introduction

Validation of dose calculations for TeV proton losses (controlled beam loss experiments)

• FLUKA is based, as far as possible, on well bench-
marked microscopic models

• However, first years of LHC operation also allowed to
validate FLUKA dose predictions against Beam Loss
Monitors (BLMs) measurements

• BLMs measure dose from secondary showers in
machine elements (magnets, collimators, etc.)

• Several thousand BLMs are installed around the ring

(ICs, filled with N2 gas, about 1500 cm2 active vol.)

Losses induced by beam wire scanner (p@3.5 TeV)

- Quench test 2010 in LHC IR4 (M. Sapinski et al.)

- Wire scans: showers due to collision products registered in BLMs
installed on downstream magnets (∼35 from wire scanner)
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Direct losses on MQ beam screen† (p@4 TeV)

- Quench test 2013 in arc sector 56 (A. Priebe et al.)

- Proton losses on beam screen (over ∼1.5 m) by means of orbit
bump/beam excitation, dose measured by BLMs outside of MQ
cryostat
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†FLUKA simulations based on MAD-X loss distribution from V. Chetvertkova et al.
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FLUKA and DPA

FLUKA and DPA in a nutshell

• DPA can be induced by all particles produced in the hadronic cascade

• displacement damage related to energy transfers to atomic nuclei

Charged particles (incl.
heavy ions)

During transport DPA based on non-ionizing energy loss (NIEL)
along particle step (restricted above damage thresh-
old Eth), using Lindhard partition function ζ(T )
and energy dependent displacement efficiency κ(T )

Figures: stopping powers for oxygen ions in silicon (left), silver ions in gold(right)
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FLUKA and DPA

FLUKA and DPA in a nutshell

continued from previous page:

Charged particles (incl.
heavy ions)

Particle falls below
transport threshold

Nuclear stopping power integrated (using Lindhard partition
function)

Elastic and inelastic en-
counters

Recoils and secondary charged particles explicitly produced if
their energy lies above transport threshold (i.e. they become
a projectile), otherwise they are treated as below threhold.

Neutrons

≤20 MeV1 DPA is based on (un)restricted NIEL as provided by NJOY

> 20 MeV recoils: same as for elastic and inelastic encounters of charged
particles

1For ≤20 MeV neutron transport, FLUKA uses multi-group approach (group-to-group
scattering probabilities from NJOY).
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DPA in LHC primary collimators (IR7) due to halo particles (preliminary)

Estimating DPA in LHC primary collimators (made of AC150)

• Two step simulation:

◦ Spatial distribution of inelastic proton-nucleus
collisions in collimators is derived by means of
multi-turn tracking simulations (using
FLUKA-Sixtrack coupling, in collaboration
with LHC collimation team)

◦ Starting from this loss distribution, the DPA
distribution is calculated in detailed (low-cut)
FLUKA shower calculations in jaw of
TCP.C6L7

• Note:

◦ By starting from the spatial distribution of
inelastic collisions, we neglect the DPA
contribution of primary protons before the
collision

• Assumptions for DPA calculations:

◦ beam energy of 7 TeV
◦ horizontal losses only
◦ annual beam losses of 1.15×1016 protons

→ corresponding to 40 fb−1 in 2012
→ one needs to apply approximately a factor

100 to get an estimate for HL-LHC lumi
goal (4000 fb−1)
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DPA in LHC primary collimators (IR7) due to halo particles (preliminary)

Spatial distribution of inelastic proton collisions in the horizontal TCP

  

Tracking results from P. Garcia Ortega.
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→ tracking simulations show unequal sharing of losses between TCP.C6L7 jaws (∼6:1)
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DPA in LHC primary collimators (IR7) due to halo particles (preliminary)

DPA in TCP jaws (1.15×1016 protons lost) – preliminary results

TCP.C6L7
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DPA in LHC primary collimators (IR7) due to halo particles (preliminary)

Anatomy of DPA predictions in TCP jaw – preliminary results
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Table below : contributions
to peak DPA at a depth of
∼15 cm (for the TCP jaw
with higher proton losses)

Peak DPA Type of

contribution: contribution:

62% Ions above transport threshold (>250 eV/nuc)

→ explicitly generated recoils

20% Pions above transport threshold (>1 keV)

5-6% Protons above transport threshold (>1 keV)

5-6% Ions below transport threshold (<250 eV/nuc)

→ non-transported recoils

6-7% Electrons above transport threshold (>500 keV)

<0.5% Others

Percentage values rounded; (statistical) error of contributions: ∼1%
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DPA in HL-LHC inner triplet magnets (IR1/5) due to proton collision debris

HL-LHC (inner triplet and D1 in IR1/5): FLUKA models and brief recap of layout

FLUKA model by L. Esposito (HL-LHC WP10)
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• HL performance goal for proton collisions@IR1/5:

◦ instantaneous luminosity of 5×1034 cm−2s−1

(= 5 × design luminosity)

◦ integrated luminosity of 3000 fb−1

(250 fb−1 per year)

HL-LHC: Q1,Q2,Q3→ Nb3Sn; D1, MCBX→ NbTi
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DPA in HL-LHC inner triplet magnets (IR1/5) due to proton collision debris

Peak DPA and NIEL in coils of triplet quadrupoles, correctors and D1 (3000 fb−1)
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DPA in HL-LHC inner triplet magnets (IR1/5) due to proton collision debris

Peak fluences in coils of triplet quadrupoles and D1 (3000 fb−1)
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• correlation peak
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• see anatomy of DPA
calculations in next
page
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DPA in HL-LHC inner triplet magnets (IR1/5) due to proton collision debris

Anatomy of DPA predictions in Q1

Contributions to DPA
maximum in Q1:

• Dominated by low-
energy neutrons (for
which FLUKA relies on
NJOY-based values for
DPA)
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contribution: contribution:

70.7% Neutrons <20 MeV (NJOY)

24.4% Ions above transport threshold

(>250 eV/nucleon)

→ explicitly generated recoils (from neutron,
proton, etc. interactions)

1.7% Protons above transport threshold (>1 keV)

1.6% Ions below transport threshold

(<250 eV/nucleon)

→ non-transported recoils

1.0% Electrons above transport threshold (>500 keV)

0.6% Pions above transport threshold (>1 keV)

<0.1% Others

Percentage values rounded; (statistical) error of contributions: few 0.1%
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Summary

Summary

• FLUKA offers a powerful way to calculate DPA for beam losses as encountered in the
LHC operational environment or during beam tests

◦ In particular, allows to take into account the contribution of different particle types,
including all particles produced in the particle shower development

• DPA estimates for horizontal primary collimator (preliminary):

◦ Simulation predicts a peak DPA of 3×10−3 for ∼40 fm−1 aka 1×1016 protons lost
(or ∼0.3 for ∼4000 fm−1)

◦ Predominant contribution comes from recoils
◦ However, present calculations still neglect contribution of primary protons before

they have an inelastic interaction

• DPA estimates for HL-LHC proton collision debris impacting on triplet magnets (IR1/5):

◦ FLUKA predicts max. DPA of ∼1.8×10−4 in Q1 coils for 3000 fm−1

◦ Dominant contribution due to neutrons <20 MeV (fluence up to 1.8×1017 cm−2)
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