The FAIR Accelerator Facility

The FAIR 13 Tm Storage Rings

The Collector Ring CR

circumference 216 m magnetic bending power 13 Tm large acceptance $\varepsilon_{x,y} = 240$ (200) mm mrad $\Delta p/p = \pm 3.0$ (1.5) %

fast stochastic cooling (1-2 GHz) of antiprotons (10 s) and rare isotope beams (1.5 s)

fast bunch rotation at h=1 with rf voltage 200 kV adiabatic debunching

optimized ring lattice (slip factor) for proper mixing large acceptance magnet system

additional feature: isochronous mass measurements of rare isotope beams

Ion Optical Modes of the CR

antiprotons $Q_x = 4.26, Q_y = 4.84$ $\gamma_t = 3.7$ $\eta = -0.016$

<u>RIBs</u> $Q_x = 3.21, Q_y = 3.71$ $\gamma_t = 2.8$ $\eta = + 0.185$

 $\frac{\text{isochronous}}{Q_x = 2.33, Q_y = 4.64}$ $\gamma_t = 1.67-1.84$ $\eta = 0$

M. Steck, FAIR EoI-Meeting CR, 8 Octber 2008.

Injection/Extraction CR

matching to pbar separator has been optimized \Rightarrow rotation - 5.6°

Septum magnets (pulsed, curved): injection: 82 mrad, 0.8 T extraction: 110 mrad, 1.1 T

Injection kicker magnets (±6 mrad): 3 units of the same type with 2 modules on different horizontal positions

Extraction kicker magnets (±12 mrad): 1 unit with 5 modules

CR Closed orbit correction

CR Closed orbit correction

MAD and WINAGILE simulations

Alignment rms errors used in tracking studies

Element	$\Delta x [mm]$	Δy [mm]	$\Delta z [mm]$	Roll [mrad]					
Dipole	0.2	0.2	0.5	0.5					
Quadrupole	0.2	0.2	0.3	0.5					
Sextupole	0.2	0.2	0.3	0.5					

Closed orbit excursions before correction

		PBAR		RIB		ISO	
		hor	ver	Hor	ver	hor	ver
Δ	X _{max} [mm]	17.22	20.93	42.17	51.06	17.07	15.19
$\Delta \lambda$	K _{average} [mm]	9.76	11.57	14.71	23.75	10.71	8.64

Closed orbit excursions after correction

ver

2.52

1.20

RIB

ver

2.64

1.34

hor

1.40

0.81

PBAR

hor

3.07

1.10

 $\Delta X_{max}[mm]$

 $\Delta X_{average}$ [mm]

Before correction The most probable COD $\,\approx\,$ 20 mm

After correction The most probable COD ≈ 1 mm

Orbit corrections are important for optimum stochastic cooling

GSİ

ISO

ver

0.92

0.46

hor

0.45

0.25

CR Dipole Magnet

Fast Bunch Rotation in CR

Fast bunch rotation of SIS100 bunch to provide optimum initial parameters for stochastic cooling total rf voltage 200 kV at h=1 reduces the momentum spread ($2.5 \rightarrow 0.5$ %) after passage of production target

SIS100 bunch after target

bunch rotation cavity filled with magnetic alloy (SIS18 bunch compressor)

voltage 40 kV length 1 m frequency range 1.18 – 1.38 MHz rotation time ~ 100 μ s

CR Stochastic Cooling Electrodes

CR Stochastic Cooling

vacuum tank with actuators for electrode movement including cold heads (20 K) and cooled pre-amplifiers

electrodes and amplifiers installed in the vacuum tank cooled to 20 K

Prototype development supported in the framework of EUFP6 design study

Detailed Ring Design

CR Straight Section 1

CR Straight Section 2

Civil Construction of CR/RESR

Building

- common tunnel for CR and RESR
- inner part of ring building (two stories) accommodates the technical systems

M. Steck, FAIR Eol-Meeting CR, 8 Octber 2008.

Ring Tunnel

Time Schedule CR

2009 Prototypes, Pre-Series Production manufacturing and testing

- 2010-2012 Series Production preparation and manufacturing
- 2013 Preparation for Installation
- 2014 Commissioning
- 2015 Start of Ring Operation

Next steps: technical design of components urgently needed to finish ring design and to start production