Status Super-FRS

FAIR

Martin Winkler, Eol/Pre-Consortium Meeting, GSI, October 9, 2008

Layout and Design parameters Goal: Larger Acceptance

Martin Winkler, Eol/Pre-Colnsortium Meeting, GSI, October 9, 2008

Aim: Production and Separation of Exotic Nuclei Using Super-FRS

Ν

A HANNA

IR

Ion-optical design of the Super-FRS High-Energy Branch (HEB)

Main-Separator

Matrix Element	MF1	MF2	MF3	MF4
(x, x)	-2.11	0.97	-2.11	1.7
(x, a)	0	0	0	0
(x, δ)	6.50	-5.95	6.50	0
(a, a)	-0.47	1.03	-0.47	0.59
(a, δ)	≈0	0	≈ 0	0
(y, y)	-1.14	1.25	-1.14	0.52
(y, b)	≈0	≈0	≈0	≈0
(b, b)	-0.91	0.89	-0.92	1.94
free space	4.0	6.0	4.0	3.0+

1st order ion-optics of

the Main-Separator

embedded octupole coils

Alignment correction

• y-steerer (integrated in multiplet cryostat)

Martin Winkler, Eol/Pre-Colnsortium Meeting, GSI, Oc Magnets must be individually powered !

Layout of the Pre-Separator

F(AIR

Prototype Dipole Fabrication by FCG

First punched sheet

- Prototype fabrication by FCG Inst. of Modern Phys. Lanzhou, Inst. of El. Eng. Beijing, Inst. of Plasma Phys. Hefei
- Prototype status
 Yoke finished
 Test-Coil fabricated and tested
 Cryostat under construction

Prototype test: end of 2008

Superferric Multiplets for the Super-FRS

		Type 3 quad	Type 4 quad	sextupole
Number of Magnets		36	21	39
Eff. length, L	m	0.8	1.2	0.5
Gradient range G.		1.0-10 T/m	1.0-10 T/m	4-40 T/m ²
Gradient quality		±8·10 ⁻⁴	±8·10 ⁻⁴	±8·10 ⁻⁴
Useable horizontal aperture	mm	±190	±190	±190
Useable vertical aperture	mm	±120	±120	±120
Embedded octupole (B"')	T/m ³	105		

- Warm bore diameter of 38 cm
- (Iron-dominated, cold iron)
- Quadrupole triplet + separated sextupoles + steering magnet
- Octupole correction coils are embedded

Superferric magnet design made by GSI

Conceptual design by Toshiba Corporation

		Type 3 quad	Type 4 quad	sextupole
Number of Magnets		36	21	39
Eff. length, L	m	0.8	1.2	0.5
Gradient range G.		1.0-10 T/m	1.0-10 T/m	4-40 T/m ²
Gradient quality		±8·10 ⁻⁴	±8·10 ⁻⁴	±8·10 ⁻⁴
Useable horizontal aperture	mm	±190	±190	±190
Useable vertical aperture	mm	±120	±120	±120
Embedded octupole (B''')	T/m ³	105		

Super Conducting Muliplet Design

Conceptual designs started by France/Spain (CEA / CIEMAT)

- re-design (superferric)
- alternative solutions

BEMFEM * ROXIE

Energy Buncher / Magnetic Spectrometer

Superferric magnet design made by GSI

Local Cryogenics

• three dipole units + one feedbox

• two multiplet units + one feedbox

'R

	outer diameter of feedbox vacuum vessel	1012 mm (~DN 1000)
Dct	height of feedbox (from bottom to top of the valves)	~ 2.4 m

Martin Winkler, Eol/Pre-Colnsortium Meeting, GSI, Oct

Installation (Tunnel Build. #103)

Super-FRS Buildings

Target Area Equipment

Graphite Wheel Target

- Solid graphite SGL Carbon R 6400P 5 steps, 1 – 8 g/cm² each step 16 mm wide Spokes from INCONEL 600 Si₃N₄ ball bearings Ag-coated cages MoS₂ lubrication $T_{limit} = 150^{\circ}C$
- cooling only by radiation
- R_{out} = 22.5 cm

Martin Winkler, Eol/Pre-Colnsortium Meeting, GSI, October 9, 200

F(AIR

Prototype Target to be used at FRS with SIS18 beams

F(AIR

Beam Catcher

- Front part: graphite (20cm+) to absorb strong pressure waves, water cooled
- **Back part: iron** (60cm) to absorb protons and neutrons.

Handling Concept (analog to PSI Villigen/CH)

Super-FRS detector system

F(AIR

Expressions of Interest for Super-FRS

France has orally expressed interest but not yet specified

5 Budker (Dip 1) / 1 VECC (LEB) 14 IMP (Dipoles 2 and 3) 5 Bud. (Q 1/2) 1 VECC (LEB) 11 CIEMAT (Types 3 and 4) 5 Bud, (Sex 1) / 1 VECC (LEB) 11 CIEMAT (Sext. Type 2) 11 CIEMAT

TT CIEMA

Interfaces by 13 GSI, about 10% of value

Interfaces by 13 GSI, about 10% of value + Finnland (8.10.08)

14 IMP, chambers dip 2/3 13 GSI V,G,Boc,NEGch 5 Budker

1 VECC 2 Profex (iron plugs)

2 Profex (degtader plates)

13 GSI

15 Wroclaw Univ. Technol.

+ Finnland (8.10.08)

Events in 2008

- March 2008: Technical Design Report
- April 2008: 1st International EoI Meeting
- May 2008: Re-Evaluation of Super-FRS by SRG
- July 2008: FAIR CC kick-off meeting
- October 2008

1st meeting and formation of international pre-collaboration board

Frame for Super-FRS Road Map

- 2008 Conceptual design, design studies and R&D completed
- 2009 2010(11) Finalization of engineering designs
- 2010 2012 Manufacturing of components
- 2012 2013 Installation and commissioning

Issue for the Eol Discussion

- 1. Which technical systems in detail does your Eol cover?
- 2. Is this work package fitting into your available EoI budget?
- 3. Which is the road map for your Eol?

Schedule for the afternoon discussion

- 1. Presentation of the Eol representatives
- 2. Discussion of the Eol interpretation
- 3. Discussion of road map and preconditions/comments

