Quench protection circuit and quench analysis of PANDA Target Solenoid system

Outline

♦ Quench protection circuit of PANDA Target Solenoid system

- Quench protection circuit presented in the TDR¹
- Updated quench protection circuit
- ♦ Quench analysis of PANDA Target Solenoid system
 - Geometry of the solenoid presented in the QSR² and Updated design
 - Material composition of the solenoid presented in the QSR and Updated design
 - Quench simulations with Quench2.4³

- 1 TDR: Technical Design Report
- 2 QSR: Quench Simulation Report
- 3 Quench2.4: Home made quench simulation code

Quench protection circuit of the PANDA Target Solenoid

Quench Simulation Report (QSR) and Technical Design Report (TDR) results

Geometry of the PANDA Target Solenoid

Material composition of the PANDA Target Solenoid

Parameter	Value		
	QSR; Coils 1,3,4,6	QSR; Coils 2,5	Updated Conductor Design with 26 strands
Superconducting cable	Rutherford type	Rutherford type	Rutherford type
Superconducting material	NbTi	NbTi	NbTi
Amount of SC	8 %	5 %	8 %
Matrix material	Copper (RRR80)	Copper (RRR80)	Copper (RRR150)
Amount of matrix	10 %	6 %	9 %
Stabilizer material	Pure Aluminum (RRR500)	Pure Aluminum (RRR500)	Pure Aluminum (RRR1000)
Amount of stabilizer	82 %	89 %	83 %
Insulation material	Fiberglass Epoxy	Fiberglass Epoxy	Fiberglass Epoxy
Insulation thickness	0.5 mm	0.9 mm	0.4 mm
Former material	Pure Aluminum (RRR2)	Pure Aluminum (RRR2)	Aluminum 5083-O
Coil insulation material	Fiberglass Epoxy	Fiberglass Epoxy	Fiberglass Epoxy
Coil insulation thickness	?	?	1 mm

Material composition of the PANDA Target Solenoid according to the different reports [1], [2].

Quench simulation of the PANDA Target Solenoid: Current

Quench simulated in sector 4 (internal downstream).

Quench simulation of the PANDA Target Solenoid: Temperature

19/09/2014

Quench simulation of the PANDA Target Solenoid: Energy

- In QSR most energy is dissipated in the cold mass
- In Update most energy is dissipated in the dump resistor
- This is most likely because of the difference in material compositions

Quench simulation of the PANDA Target Solenoid: Voltage

Quench simulated in sector 4 (internal downstream).

Conclusions

- Some QSR and TDR results are not yet understood (discharge, hotspot temperature)
 - Possible explanation: difference in normal zone propagation?
- Discharge is faster than 17s reported in the TDR, is this an issue for the surrounding detectors?
- With material properties of present conductor and casing designs, the hotspot temperature is only 30 K
- \diamond Peak voltage during quench is around 150 V

- \diamond Next:
 - quench simulations for different quench start locations

References

[1] Technical Design Report for the PANDA Solenoid and Dipole Spectrometer Magnets, The PANDA Collaboration, 2009, arxiv:0907.0169.
[2] PANDA Magnet – Quench Simulation, The PANDA Collaboration.