

SIS100 Pre-Collaboration Meeting Technical System: 2.8.2 Magnets

Egbert Fischer GSI

September 15th, 2008 GSI, Darmstadt

Content

1. Basic magnet parameters of the SIS100 [2.8.2]

2. Design status of the sc magnets

2.1. Main magnets: full size models

- 2.1.1. Industrial dipole production (Babcock Noell GmbH)
- 2.1.2. Dipole manufacturing (JINR Dubna)
- 2.1.3. Quadrupole manufacturing (JINR Dubna)
- 2.1.4. Curved dipole (BINP Novosibirsk)
- 2.2. Dipole redesign [2.8.2.1]
- 2.3. Quadrupole design [2.8.2.2]
- 2.4. Correction magnets [2.8.2.3]
- **2.5. Cable production**
- **2.6. Steering magnet** [2.8.2.4]
- 3. Cryo Magnetic Modules

4. Summary

1. Basic magnet parameters of the SIS100 [2.8.2]

2.8.2.1 Dipole 108 + 1 sc sf wf curved 1.9 3.062 58.18 / 52.632 115 / 60 44 2.8.2.2 Quadrupole 168 + 3 sc superferric 27 1.3 135 / 65 57 Quadrupole [n]:/Extr. 4 sc superferric 27 1.3 135 / 65 57 2.8.2.3 Correction Magnets -	SIS100	Magnet	Number of magnets	nc/sc	Magnet design /type	Max. field (T), Gradient (T/m), etc.	Effective field length (m)	Bending angle(mrad) /radius (m)	*Useable horizontal / vertical aperture (mm)	Max. ramp rate (T/s,)
2.8.2.2 Quadrupole 168 + 3 sc superferric 27 1.3 135 / 65 57 Quadrupole Inj./Extr. 4 sc superferric 27 1.3 135 / 65 57 Quadrupole Inj./Extr. 4 sc superferric 27 1.3 135 / 65 57 2.8.2.3 Correction Magnets 12 sc saddle coil 0.75 / model 150 5 T/m*s 2.8.2.3.2 Chromat. Sextupoles 48 sc saddle coil 30 T/m2 0.75 150 210 T/m2*s 2.8.2.3.3 Error Comp. Outpoles† 12 sc saddle coil 200 T/m2 0.75 150 210 T/m2*s 2.8.2.3.4 Resonance Sextupoles 12 nc 6-fold 150 T/m2 0.74 150 8500 T/m3*s 2.8.2.3.4 Fror Comp. Outpoles† 12 sc saddle coil 200 T/m3 0.75 150 8500 T/m3*s 2.8.2.4.1 Comb. h/v 84 sc saddle coil 0.3 <th< th=""><th>2.8.2.1</th><th>Dipole</th><th>108 + 1</th><th>SC</th><th>sf wf curved</th><th>1.9</th><th>3.062</th><th>58.18 / 52.632</th><th>115 / 60</th><th>4</th></th<>	2.8.2.1	Dipole	108 + 1	SC	sf wf curved	1.9	3.062	58.18 / 52.632	115 / 60	4
Quadrupole Inj./Extr. 4 sc superferric 27 1.3 135 / 65 2.8.2.3 Correction Magnets -<	2.8.2.2	Quadrupole	168 + 3	SC	superferric	27	1.3		135 / 65	57
2.8.2.3 Correction Magnets		Quadrupole Inj./Extr.	4	SC	superferric	27	1.3		135 / 65	
2.8.2.3.1 Error Comp. Quadrupoles† 12 sc saddle coil 0.75 150 5 T/m*s 2.8.2.3.2 Chromat. Sextupoles 48 sc saddle coil 350 T/m2 0.5 135 / 65 2000 T/m2*s 2.8.2.3.3 Error Comp. Sextupoles† 12 sc saddle coil 50 T/m2 0.75 150 210 T/m2*s 2.8.2.3.4 Resonance Sextupoles† 12 sc saddle coil 2007 T/m2 0.74 150 2000 T/m2*s 2.8.2.3.6 Fror Comp. Octupoles† 12 sc saddle coil 2000 T/m3 0.75 150 8500 T/m2*s 2.8.2.3.6 Fast quadrupole 1 nc 4-fold 12.5 T/m 0.54 125 125 T/m*s 2.8.2.4.1 Scering magnets	2.8.2.3	Correction Magnets								
2.8.2.3.2 Chromat. Sextupoles 48 sc saddle coil 350 T/m2 0.5 135 / 65 2000 T/m2*s 2.8.2.3.3 Error Comp. Sextupoles† 12 sc saddle coil 50 T/m2 0.75 150 210 T/m2*s 2.8.2.3.4 Resonance Sextupoles 12 nc 6-fold 150 T/m2 0.74 150 2000 T/m2*s 2.8.2.3.5 Error Comp. Octupoles† 12 sc saddle coil 200 T/m3 0.75 150 8500 T/m3*s 2.8.2.3.6 Fast quadrupole 1 nc 4-fold 12.5 T/m 0.54 125 125 T/m*s 2.8.2.4 Steering magnets	2.8.2.3.1	Error Comp. Quadrupoles†	12	SC	saddle coil	0.75 T/m	0.75		150	5 T/m*s
2.8.2.3.3 Error Comp. Sextupoles† 12 sc saddle coil 50 T/m2 0.75 150 210 T/m2*s 2.8.2.3.4 Resonance Sextupoles 12 nc 6-fold 150 T/m2 0.74 150 2000 T/m2*s 2.8.2.3.5 Error Comp. Octupoles† 12 sc saddle coil 2000 T/m3 0.75 150 8500 T/m3*s 2.8.2.3.6 Fast quadrupole 1 nc 4-fold 12.5 T/m 0.54 125 125 T/m*s 2.8.2.4 Steering magnets 2.8.2.4.1 Comb. h/v 84 sc saddle coil 0.3 0.5 1.5 135 / 65 1.5 2.8.2.4.1 Comb. h/v 84 sc saddle coil 0.3 0.5 1.5 135 / 65 1.5 2.8.2.5.1 Injection septum 1 nc wf 0.82 1.5 h: 69 70 / 40 2.8.2.5.2 Lambertson septum 1 nc wf 0.35 1.5 v: 5.1 60 / 30 2.8.2.5.3 Extraction s	2.8.2.3.2	Chromat. Sextupoles	48	SC	saddle coil	350 T/m2	0.5		135 / 65	2000 T/m2*s
2.8.2.3.4 Resonance Sextupoles 12 nc 6-fold 150 T/m2 0.74 150 2000 T/m3 *s 2.8.2.3.5 Error Comp. Octupoles† 12 sc saddle coil 2000 T/m3 0.75 150 8500 T/m3*s 2.8.2.3.6 Fast quadrupole 1 nc 4-fold 12.5 T/m 0.54 125 125 T/m*s 2.8.2.3.6 Fast quadrupole 1 nc 4-fold 12.5 T/m 0.54 125 125 T/m*s 2.8.2.4.1 Comb. h/v 84 sc saddle coil 0.3 0.5 1.5 135 / 65 1.5 2.8.2.4.2 Extraction system steerer 1 nc 2.8.2.5.1 Injection septum 1 nc wf 0.82 1.5 h: 69 70 / 40 2.8.2.5.2 Lambertson septum 1 nc wf 0.6 1 v. 5.6/166.67 30 / 40 2.8.2.5.3 Extraction septum 1 1 nc wf 0.5 v. 5.1 60 / 30 2.8.2.5.4 Extraction septum 3†	2.8.2.3.3	Error Comp. Sextupoles†	12	SC	saddle coil	50 T/m2	0.75		150	210 T/m2*s
2.8.2.3.5 Error Comp. Octupoles† 12 sc saddle coil 2000 T/m3 0.75 150 8500 T/m3*s 2.8.2.3.6 Fast quadrupole 1 nc 4-fold 12.5 T/m 0.54 125 125 T/m*s 2.8.2.4 Steering magnets - - - - - - 2.8.2.4 Steering magnets - - - - - - 2.8.2.4.1 Comb. h/v 84 sc saddle coil 0.3 0.5 1.5 135 / 65 1.5 2.8.2.4.2 Extraction system steerer 1 nc - - - - - 2.8.2.5.1 Injection septum 1 nc wf 0.82 1.5 h: 69 70 / 40 2.8.2.5.2 Lambertson septum 1 nc wf 0.6 1 v. 5.6/166.67 30 / 40 2.8.2.5.3 Extraction septum 1 1 nc wf 0.35 1.5 v. 5.1 60 / 30 2.8.2.5.4 Extraction septum 2 1 nc wf 1	2.8.2.3.4	Resonance Sextupoles	12	nc	6-fold	150 T/m2	0.74		150	2000 T/m2 *s
2.8.2.3.6 Fast quadrupole 1 nc 4-fold 12.5 T/m 0.54 125 125 T/m*s 2.8.2.4 Steering magnets Image: Comb. h/V 84 sc saddle coil 0.3 0.5 1.5 135 / 65 1.5 2.8.2.4.1 Comb. h/V 84 sc saddle coil 0.3 0.5 1.5 135 / 65 1.5 2.8.2.4.2 Extraction system steerer 1 nc Image: Comb. h/V 84 sc saddle coil 0.3 0.5 1.5 135 / 65 1.5 2.8.2.4.2 Extraction system steerer 1 nc Image: Comb. h/V 84 sc saddle coil 0.3 0.5 1.5 135 / 65 1.5 2.8.2.5.4 Extraction septum 1 nc Wf 0.82 1.5 h: 69 70 / 40 2.8.2.5.3 Extraction septum 1 nc Wf 0.6 1 v. 5.6/166.67 30 / 40 2.8.2.5.4 Extraction septum 1 nc Wf 1 1 v. 10 70 / 35 2.8.2.5.5 Extraction sept	2.8.2.3.5	Error Comp. Octupoles†	12	SC	saddle coil	2000 T/m3	0.75		150	8500 T/m3*s
Steering magnets Steering magnets<	2.8.2.3.6	Fast quadrupole	1	nc	4-fold	12.5 T/m	0.54		125	125 T/m*s
2.8.2.4 Steering magnets										
2.8.2.4.1 Comb. h/v 84 sc saddle coil 0.3 0.5 1.5 135 / 65 1.5 2.8.2.4.2 Extraction system steerer 1 nc 2.8.2.4.2 Extraction system steerer 1 nc 2.8.2.5 Magnetic Septa 2.8.2.5.1 Injection septum 1 nc wf 0.82 1.5 h: 69 70 / 40 2.8.2.5.2 Lambertson septum 1 nc wf 0.6 1 v. 5.6/166.67 30 / 40 2.8.2.5.3 Extraction septum 1 1 nc wf 0.35 1.5 v. 5.1 60 / 30 2.8.2.5.4 Extraction septum 31† 1 nc wf v. 1.85 V: 40.5 2.8.2.5.5 Extraction septum 31† 1 nc wf 0.8 0.5 v. 4 40 / 40 2.8.2.5.6 Transfer septum 2 <t< td=""><td>2.8.2.4</td><td>Steering magnets</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	2.8.2.4	Steering magnets								
2.8.2.4.2 Extraction system steerer 1 nc Image: constraint of the system steerer 1 <th1< th=""> 1 <th1< th=""> 1<td>2.8.2.4.1</td><td>Comb. h/v</td><td>84</td><td>SC</td><td>saddle coil</td><td>0.3</td><td>0.5</td><td>1.5</td><td>135 / 65</td><td>1.5</td></th1<></th1<>	2.8.2.4.1	Comb. h/v	84	SC	saddle coil	0.3	0.5	1.5	135 / 65	1.5
Image: Septe Image: Sept I	2.8.2.4.2	Extraction system steerer	1	nc						
2.8.2.5 Magnetic Septa Image: constraint of the septem Image: constraint of the septem <td></td>										
2.8.2.5.1 Injection septum 1 nc wf 0.82 1.5 h: 69 70 / 40 2.8.2.5.2 Lambertson septum 1 nc wf 0.6 1 v. 5.6/166.67 30 / 40 2.8.2.5.3 Extraction septum 1 1 nc wf 0.35 1.5 v. 5.1 60 / 30 2.8.2.5.4 Extraction septum 2 1 nc wf 1 1 v. 10 70 / 35 2.8.2.5.5 Extraction septum 3 ⁺⁺ 1 nc wf 1 1 v. 10 70 / 35 2.8.2.5.5 Extraction septum 3 ⁺⁺ 1 nc wf 0.8 0.5 v. 40.5 2.8.2.5.6 Transfer septum 1 1 nc wf 0.8 0.5 v. 40 / 40 2.8.2.5.7 Transfer septum 2 1 nc wf 1.57 3 v. 47.2 40 / 40 * (horizontal x vertical) or diameter if circular	2.8.2.5	Magnetic Septa								
2.8.2.5.2 Lambertson septum 1 nc wf 0.6 1 v: 5.6/166.67 30 / 40 2.8.2.5.3 Extraction septum 1 1 nc wf 0.35 1.5 v: 5.1 60 / 30 2.8.2.5.4 Extraction septum 2 1 nc wf 1 1 v: 10 70 / 35 2.8.2.5.4 Extraction septum 2 1 nc wf 1.5 V: 40.5 2.8.2.5.5 Extraction septum 3†† 1 nc wf 0.8 0.5 v: 4 40 / 40 2.8.2.5.6 Transfer septum 1 1 nc wf 1.57 3 v: 47.2 40 / 40 2.8.2.5.7 Transfer septum 2 1 nc wf 1.57 3 v: 47.2 40 / 40 * (horizontal x vertical) or diameter if circular	2.8.2.5.1	Injection septum	1	nc	wf	0.82	1.5	h: 69	70 / 40	
2.8.2.5.3 Extraction septum 1 1 nc wf 0.35 1.5 v. 5.1 60 / 30 2.8.2.5.4 Extraction septum 2 1 nc wf 1 1 v. 10 70 / 35 2.8.2.5.4 Extraction septum 2 1 nc wf 1 1 v. 10 70 / 35 2.8.2.5.5 Extraction septum 3†† 1 nc wf h: 0.25 2.2 h: 5 80 / 45 2.8.2.5.6 Transfer septum 1 1 nc wf 0.8 0.5 v. 4 40 / 40 2.8.2.5.7 Transfer septum 2 1 nc wf 1.57 3 v. 47.2 40 / 40 * (horizontal x vertical) or diameter if circular	2.8.2.5.2	Lambertson septum	1	nc	wf	0.6	1	v. 5.6/166.67	30 / 40	
2.8.2.5.4 Extraction septum 2 1 nc wf 1 1 v: 10 70 / 35 2.8.2.5.5 Extraction septum 3†† 1 nc wf h: 0.25 2.2 h: 5 80 / 45 2.8.2.5.6 Transfer septum 1 1 nc wf 0.8 0.5 v: 4 0 / 40 2.8.2.5.7 Transfer septum 2 1 nc wf 1.57 3 v: 47.2 40 / 40 * (horizontal x vertical) or diameter if circular	2.8.2.5.3	Extraction septum 1	1	nc	wf	0.35	1.5	v: 5.1	60 / 30	
2.8.2.5.5 Extraction septum 3†† 1 nc wf h: 0.25 2.2 h: 5 80 / 45 2.8.2.5.6 Transfer septum 1 1 nc wf 0.8 0.5 v: 4 0 / 40 2.8.2.5.7 Transfer septum 2 1 nc wf 1.57 3 v: 47.2 40 / 40 * (horizontal x vertical) or diameter if circular	2.8.2.5.4	Extraction septum 2	1	nc	wf	1	1	v. 10	70 / 35	
2.8.2.5.5 Extraction septum 3†† 1 nc wf h: 0.25 2.2 h: 5 80 / 45 2.8.2.5.6 Transfer septum 1 1 nc wf 0.8 0.5 v: 4 40 / 40 2.8.2.5.7 Transfer septum 2 1 nc wf 1.57 3 v: 47.2 40 / 40 * (horizontal x vertical) or diameter if circular						v: 1.85		V: 40.5		
2.8.2.5.6 Transfer septum 1 1 nc wf 0.8 0.5 v. 4 40 / 40 2.8.2.5.7 Transfer septum 2 1 nc wf 1.57 3 v. 47.2 40 / 40 * (horizontal x vertical) or diameter if circular	2.8.2.5.5	Extraction septum 3++	1	nc	wf	h: 0.25	2.2	h: 5	80 / 45	
2.8.2.5.7 Transfer septum 2 1 nc wf 1.57 3 v. 47.2 40 / 40 * (horizontal x vertical) or diameter if circular	2.8.2.5.6	Transfer septum 1	1	nc	wf	0.8	0.5	v. 4	40 / 40	
* (horizontal x vertical) or diameter if circular	2.8.2.5.7	Transfer septum 2	1	nc	wf	1.57	3	v. 47.2	40 / 40	
† form one magnet unit	* (horizontal >	vertical) or diameter if circular								
	† form one m	agnet unit								
++separate coils: vertical and horizontal	††separate co	oils: vertical and horizontal								

FA

Main R&D Results: short test models

Nuclotron dipole inside cryostat:

- 1 yoke end plate
- 2 brackets
- 3 coil end loop
- 4 beam pipe
- 5 helium headers
- 6 suspension
- 7 laminated yoke

Design consequences:

- brackets, end plates made from SS
- Iaser cut lamination slits
- minimized coil ends
- optimized lamination geometry
- new coil package structure

Main R&D Results: Coil mechanics

Nuclotron cable:

- 1 Cooling tube
- 2 SC wire
- 3 CrNi wire
- 4 Kapton tape
- 5 Glasfiber tape

stress strain load tests on the complete coil winding pack:

Analysis of:

- wire and cable design
- Insulation concept
- Winding scheme
- **Technological optimization**
- **ANSYS Models**

Richtung Y-Richtung

250

100 150

Temperature, k

- Substrate: comb or block
- Model coils production (BNG)
 - **Mechanical tests**

onfraction

stress - strain

Main R&D Results on Nuclotron based SC Magnets

- The sources of the loss generation are understood, numerical calculations match the respective measurements
- Stainless steel end plates and brackets
- Minimized coil end loops
- Laminated and horizontally cut endblocks
- > New SC wire with higher current density and lower losses
- More rigid coil structure
- Decision: design and build full size models (contracts Dec. 2006)
 - Two straight dipoles: BNG Wuerzburg (Industry), JINR Dubna (Institute) → different manufacturing technologies and materials
 - Quadrupole: JINR Dubna
 - Curved dipole: BINP Novosibirsk
 - \rightarrow "no sagitta": significant benefits for lattice design and operation

SIS 100 full size models: design parameters

		Straight dipole FBTR (March 2006)	Curved dipole (Oct. 2006)
B x L _{effective}	[Tm]	5.818	5.818
В	[T]	2.11	1.9
L _{effective}	[m]	2.756	3.062
Estimated L _{yoke}	[m]	2.696	3.002
Bending angle	[deg]	3 1/3	3 1/3
Radius of curvature	[m]	47.368	52.632
Aperture (h x v)	[mm]	130 x 60	115 x 60
		Quadrupole FBTR (March 2006)	Quadrupole elongated (Oct. 2006)
B' x L _{effective}	[T]	35	35
B'	[T/m]	32	27
L _{effective}	[m]	1.1	1.3
Estimated L _{yoke}	[m]	1	1.2
Aperture (h x v)	[mm]	135 x 65	135 x 65

GSİ

[[]]

SIS 100 full size model: dipole from Babcock Noell GmbH

full size dipole manufacturing

SIS 100 full size model: dipole from Babcock Noell GmbH

1st Full Size Dipole is under installation for testing at GSI cryotest facility!

► see also: G. Sikler et al. "Manufacturing of the first Full Size Model of a SIS100 Dipole Magnet", WAMSDO 2008, 19-23 May, CERN, Geneva

SIS 100 full size model: dipole from Babcock Noell GmbH

SIS 100 full size model: dipole manufacuring at JINR

hi re pr th sh th

high quality and reproducible production of the lamination shape and the the iron yoke

see also: A.Kovalenko et. al "Full Size Magnets for Heavy Ion Superconducting Synchrotron SIS100 at GSI: Status of Manufacturing and Test at JINR", EPAC 2008, 23 to 27 June, Genova June, 2008, Genova

Full size model: curved dipole geometric parameters

61,8

68

82,5

8.36

10.5

GSI

Full size model: curved dipole assembly at BINP

- ► Yoke and cryostat from BINP Novosibirsk
- SC coil will be produced at JINR Dubna

GEMEINSCHAFT

Completion scheduled for November 2008

Full size model: quadrupole manufacturing at JINR

Additional operation requirements

Continuously triangular cycle:

During commissioning of experiments, many other operation modes may occur. An extremal cycle with B_{max} = 2 T, dB/_{dt} = 4 T/s, f=1 Hz must be provided (decision March 2007)

Beam pipe as cryopump

- elliptical cross section
- wall thickness: 0.3 mm (minimize AC-losses!)
- strengthening of chamber by ribs
- T_{max} < 15 K (to be cooled by forced Helium flow or yoke)</p>
- Optimal integrative design solution is urgent !

see also: P. Schnizer et al.: "Superferric Rapidly Cycling Magnets – Optimized Field Design and Measurement", WAMSDO 2008, CERN, Geneva

- The estimated limits of the actual full size models are not sufficient for the recently changed requirements of the SIS100 machine (also a significant operation margin has to be provided).
- Redesign options to satisfy the updated operation parameters:
 - > new cable design (with lower hydraulic resistance)
 - Shorter coil length
 - CSLD (curved single layer dipole)

Magnet Design Options: New cable and single layer coil

"DESIGN AND TEST OF A HOLLOW SUPERCONDUCTING CABLE BASED ON KEYSTONED NbTi COMPOSITE WIRES", ASC 2004, October 2004, Jacksonville, USA H. G. Khozhibagiyan et al., ASC2004, Jacksonville, Florida, USA, IEEE Trans. on Supercond., Vol. 15, No. 3, Part II, pp. 1529-1532, June 2005

cycle limit estimations for a round wire cable CSLD with 8 turns (detailed specification in MT-INT-EF-2007-002, GSI):

Dynamical heat release (cycle 2c)	W	≈ 31
Pressure drop for cycle 2c	bar	≈ 0.42
Maximal temperature of helium in the coil (2c)	К	4.7
Dynamical heat release (B _{max} = 1.9 T, f = 1 Hz)	W	≈ 54
Pressure drop (B_{max} = 1.9 T, f = 1 Hz)	bar	≈ 0.7
Maximal temperature of helium in the coil (triangular cycle with $B_m = 1.9 \text{ T}$, f = 1 Hz)	к	4.8

GSI

Design and test of a single layer coil model

- advantages of a high current cable:
 - single layer coil
 - allows reducing the <u>aperture</u> and AC loss
 - simplifies cooling
 - simpler coil mechanics

▶ model dipole with a single layer coil, tested at JINR Dubna in 2004 and a quadrupole based on a two turn per pole
▶ coil, tested in 2006

Main Operation Parameters of the CSL-Dipole

Parameter Version	straight	curved	C2LD-a	CSLD
Maximum field, T	2.11	1.9	1.9	1.9
Magnetic length, Tm	2.756	3.062	3.062	3.062
Turns per coil	16	16	16	8
Usable aperture, mm ²	$130 \cdot 60$	$115 \cdot 60$	$115 \cdot 60$	$140 \cdot 60$
Cables				
Number of strands	31	31	38	23
Outer diameter, mm	7.36	7.36	7.5	8.25
Cooling tube inner	4	4	4.7	4.7
diameter, mm	•	•	•••	•• /
Length of the cable in the coil, m	110	110	110	57
Bus bars length, m	37	39	39	39
Operating current	7163	6500	6500	13000
Critical current @ 2.1 T, 4.7 K	11900	11900	11900	19840
Wires				
Strand diameter, mm	0.5	0.5	0,46	0.8
Filament diameter, µm	2.5 - 4	2.5 - 4	2.5 - 4	3.5 - 4
Filament twist pitch, mm	4 – 5	4 – 5	4 - 5	5 - 8
loss and hydraulic				
Static heat flow, W	7	7	7	7
Heat load to bus bars, W	0.5	0.5	0.5	0.5
	cycle 2	с		
AC losses, W	36.3	35.4	35.4	35.7
Pressure drop, bar	1.10	1.15	0.604	0.389
T_{max} of <i>He</i> in the coil	4.94	4.95	4.78	4.64
(for $x_6 \approx 1$), K				
triangular cycle [dB/dt = 4 T/s	$t_{cycle} = 2 \cdot I$	$B_{max}/(dB/dt)]$	
AC losses, W	75.1	74.0	74.0	74.6
Pressure drop, bar	1.14	1.20	0.657	0.486
I_{max} of <i>He</i> in the coil, K	5.08	5.10	4.80	4./2
-	at $I_6 = 0$ A	at 1 ₆ =0K	at $I_6 = 0$ K	at $I_6 = /\Lambda$
		0		
HELMHOLTZ		for	details	see —

GEMEINSCHAFT

Curved Single Layer Dipole at intensive ramping modes:

GSI

T – S diagrams for the CSLD operation Helium flow trough the bus bars I, the coil III and the iron yoke IV at cycles - 2c (left) and triangular (right)

Single Layer Dipole:

"Minimization of AC Power Losses in Fast Cycling Window Frame 2T Superferric Magnets with the Yoke at T=4.5K",E.Fischer et al., ASC 2004, 3LR04; Internal Note GSI: MT-INT-EF-2004-09

Curved Single Layer Dipole:

"Full Size Model Magnets for the FAIR SIS100 Synchrotron"; Egbert Fischer, Hamlet Khodzhibagiyan, Alexander Kovalenko; MT-20; 4V07; 2007; Internal Note GSI: MT-INT-EF-2007-03

Dipole redesign: cable parameters (TDR)

Number of strands			23	
Transposition pitch			50	mm
Cooling tube material			Cu-Ni	
Cooling tube outer diameter			5.7	mm
Cooling tube wall thickness			0.5	mm
Critical current @ 2.1 T, 4.2 K			19840	А
1st insulating layer	with epoxy im	pregnatio	on	
material	kapton	tape	2	layers
thickness/layer			50	microns
2nd insulating layer	with epoxy im			
material			2	layers
thickness	kapton	tape	70	microns
Wire				
Strand diameter			0.825	mm
Filament diameter			3.5	microns
Number of filaments			18144	
Filament twist pitch			5-8	mm
Superconducting material			NbTi	
Copper to superconductor ratio			1.5	
Copper RRR			196	
Transverse resistivity				Ωm
Fixation of the strands	CrNi-wire	D=0.2	transp. $= 0.4$	mm
Coating	epoxy compou			

Cross section of the cable adopted for the SIS100 dipole coils (Nuclotron-type cable).

Dipole redesign: geometric details (TDR)

GEMEINSCHAFT

Dipole redesign: magnet parameters (TDR)

Name of the magnet		SIS 100 Main Ring Dipole
Number of magnets		108 + 1 reference magnet
Design		Window-frame, laminated cold iron
		yoke, lamination thickness 1mm, one
		layer coil with 8 turns
Max. Field	Т	1.9
Min. Field	Т	0.23
Bending angle	Deg.	3.33
Edge angles (entrance / exit)	Deg.	1.665 / -1.665
Orbit curvature radius, R	m	52.632
Effective magnetic length, L	m	3.062
Coil aperture	mm	165 · 68
Useable aperture	mm	135 · 60
(good field region):		
Field quality (goal)		$\pm 6 \cdot 10^{-4}$
Overall magnet length (slot length)	m	3.354
Overall width (cryostat)	m	1.0
Overall height (cryostat)	m	1.0
Overall weight	kg	1850
Current at max. field	А	12745
Inductance	mH	0.55
Ramp rate	T/s	4
High field flat top duration	S	0.1
Low field flat top duration	S	0.8
Cycle length	S	1.82
Total AC loss per cycle @4.2K per	J	78
magnet (cycle number 2c)		

6

ELMHOLTZ GEMEINSCHAFT

curved single layer dipole (CSLD) (details: see Technical Design Report, GSI Darmstadt, 2008)

2.4. Correction magnets: Chromaticity sextupole [2.8.2.3.2]

Requirements

Number of magnets	48
Physical length	0.55 m
Magnetic length	0.5 m
Aperture	135 mm * 65 mm
Maximum main field strength*	175 T/m²
Minimum Ramp time to max.	0.175 second

 $B = B_{y} + iB_{x} = \sum_{n=1}^{\infty} (B_{n} + iA_{n})(x + iy)^{n-1}$

Computation results

Maximum Operation current [A]	182
Stored energy [J]	1050
Inductance [mH]	63.4
Inductive voltage [V]	66
Peak Power [W]	1200 0

Design:

- Super-ferric magnet
- Nuclotron type cable with insulated sc wires:
 - Low current (reduce lead loss)
 - Each wire is connected in series

651

2.4. Correction magnets: Error compensation multipole correctors [2.8.2.3.1], [2.8.2.3.3], [2.8.2.3.5]

Requirements	Quadrupole	Sextupole	Octupole			
Number of magnets	12					
Physical length	0.8 m					
Magnetic length	0.75 m					
Aperture diameter	150 mm					
Maximum field strength*	<i>B</i> ₂ = 0.75 T/m	<i>B</i> ₄ = 333 T/m ³				
Ramp time to max.	0.15 second	0.238 second	0.235 second			

***** $B = B_y + iB_x = \sum_{n=1}^{\infty} (B_n + iA_n)(x + iy)^{n-1}$

Computation results

	Quadrupole	Sextupole	Octupole
Current [A]	86	191	300
Stored energy [J]	33	219	180
Inductance [mH]	9	12	4
Inductive voltage [V]	5	10	5
Peak power [W]	441	1827	1570

Design: Nested magnet

GSI

2.4. Correction magnets: Error compensation multipole correctors [2.8.2.3.1], [2.8.2.3.3], [2.8.2.3.5] FAIR

2.5. Steering magnet

[2.8.2.4.1]

- Horizontal and vertical dipole nested
- Nuclotron type cable with insulated sc wires

Machine for the Production of SIS100 Cable

Features:

Very constant and precise propagation velocity due to independent caterpillar unit.

Caterpillar is the master for all other (spinning) parts and subunits:

=> Constant pitch for SC strands, CrNi wire and various kapton bands

The individual spools for the SC strands actively perform a complete back-rotation (to maintain their orientation with respect to the lab-frame).

Estimated production rate: \geq 120 m (\approx 1 complete dipole magnet) per 8 h-shift.

=> The overall length of test cable which could be produced during summer 2007 is limited only by the availability of SC strand.

Machine for the Production of SIS100 Cable

With the new SIS100 cable-machine it is possible:

To produce cables of SIS100- or Rutherford-type (with or without central carrier, without and with compression) composed out of up to 40 strands.

Due to its flexibility and high production rates the new cable machine represents a firm tool for R&D-manufacturing of novel types and geometries of cables.

The process-reliability and the capability of series production is well-proven for the central units of the machine (with the positive implications on the overall project risk).

It is able to meet the tight time schedule for the SIS100 project completion

Estimated production rate: ≥ 120 m (> 1 complete dipole magnet) per 8 h-shift.

3. Cryo Magnetic Module Structure: lattice & elements

courtesy of Alexander Kovalenko

3. Cryo Magnetic Module Structure

Schematic structure of the <u>Short Straight Section</u> Quadrupole CMM

 $\Xi \Delta$

courtesy of Jan Patrick Meier

3. Cryo Magnetic Module Structure

Schematic structure of the Straight Section Qudrupole CMM

 $[\Delta]$

CMM configuration for the SIS 100 synchrotron

	s	51	s	2	s	3	s	4	s	5	S	6	Sum
СММ Туре	Straight Section	Arc											
Quadrupole (warm – warm)	2		3		3		3		3	2.	3	3.	17
Special Quadrupole	1									2			3
Quadrupole (cold – cold)		9		9		9		9		9		8	53
Quadrupole (cold – warm)	1.	2		2		2		2				3	11
Main Dipole		18		18		18		18		18		18	108

- 1. The transfer CMM to SIS300 is forming a special module in the straight section of sector 1
- 2. Injection and Extraction CMM are termination the arc cryostat in sector 5
- 3. One of the SSS QP CMM's has changed to an arc termination version due to the warm missing dipole gap
- 4. Amongst the SSS QP CMM's are also further configuration varieties which are not note noted in this table.

Summary

- The main R&D goals of SIS100 magnets has been reached.
- Manufacturing techniques are prepared for the full length dipole and quadrupole magnets. The mechanical stability of sc coils manufactured using a "dry" technology still has to be tested experimentally.
- The first prototype dipoles are ready for testing at GSI and JINR, a quadrupole and a curved dipole will be ready in IV 2008.
- The redesign toward an optimized curved dipole with a single layer coil is given in the TDR, as well as working designs for the superconducting correction and steering magnets.
- Cooperation partners of Russian institutes and German Industry are prepared for R&D finalization and project realization. The structure of their consortium will depend on the optimal and effective distribution of the working tasks and the agreement about the respective in kind contributions.

