High energy ion acceleration and neutron production using relativistic transparency in solids

Oliver Deppert^{1,+,*}, Daniel Jung³, Katerina Falk³, Nevzat Guler³, Vincent Bagnoud², Stefan Bedacht^{1,#}, Matthew J. Devlin³, Andrea Favalli³, Juan Fernandez³, Cort D. Gautier³, Matthias Geissel⁴, Robert C. Haight³, Chris E. Hamilton³, Manuel B. Hegelich³, Randall P. Johnson³, Annika Kleinschmidt¹, Frank E. Merrill³, Alex Ortner¹, Gabriel Schaumann¹, Kurt Schoenberg³, Marius Schollmeier⁴, Thomas Shimada³, Terry N. Taddeucci³, Alexandra Tebartz¹, Joshua L. Tybo³, Florian Wagner^{1,#}, Stephen A. Wender³, Carl H. Wilde³, Glen A. Wurden³ and Markus Roth^{1,2, A}

21.0MeV

18.8MeV

16.3MeV

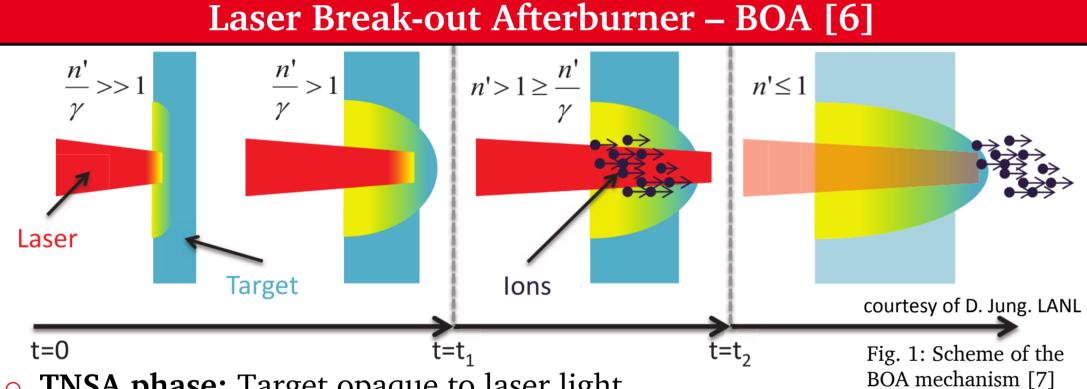
¹Technische Universität Darmstadt, Germany; ²GSI – Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany ³Los Alamos National Laboratory, Los Alamos, New Mexico, USA^{##}; ⁴Sandia National Laboratories, Albuquerque, New Mexico, USA^{**}

*Oliver.Deppert@stud.tu-darmstadt.de

*In acknowledgement of his gratitude O. Deppert thanks HGS-HIRe and HIC for Fair for funding his scholarship. #Stefan Bedacht and Florian Wagner are supported by BMBF.

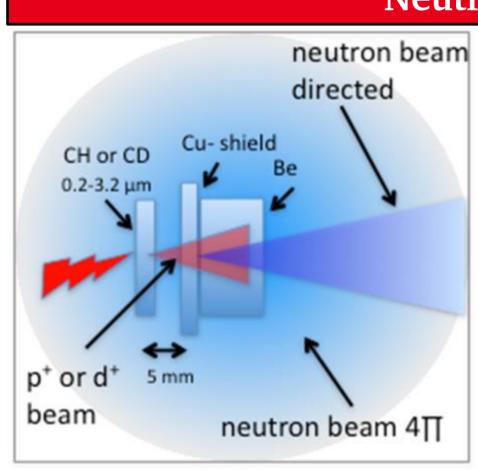
▲ Markus Roth was supported by the LANL Rosen Scholar award. This project was supported by DFG. ##This work was performed under the auspices of the US Department of Energy by the Los Alamos National Laboratory under the Contract No. DE-AC52-06NA25396

NTOF #4

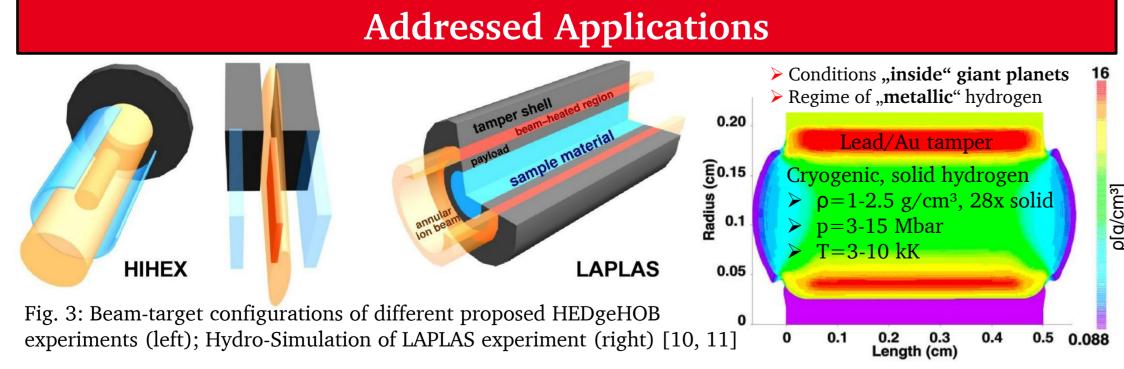

NTOF #5

NTOF # 1

Introduction And Motivation


The generation of neutrons by the interaction of accelerator driven ion beams has gained substantial interests over the last decades. Especially in the field of nuclear and material science [1], biology [2] or even in medicine [3] low energetic and thermal neutrons are used to alter material properties or to treat cancer diseases, respectively. On the other hand, high energetic neutrons as diagnostic for exotic material states, like Warm Dense Matter (WDM) [4] as well as a complimentary diagnostic for High Energy Density Matter (HEDM) [5] open very promising insights to these plasma conditions. With scope on neutron production, laser driven ions offers highest brilliance, very short pulse **lengths** (ps-ns) and **very intense beams** (up to 10¹³ particles).

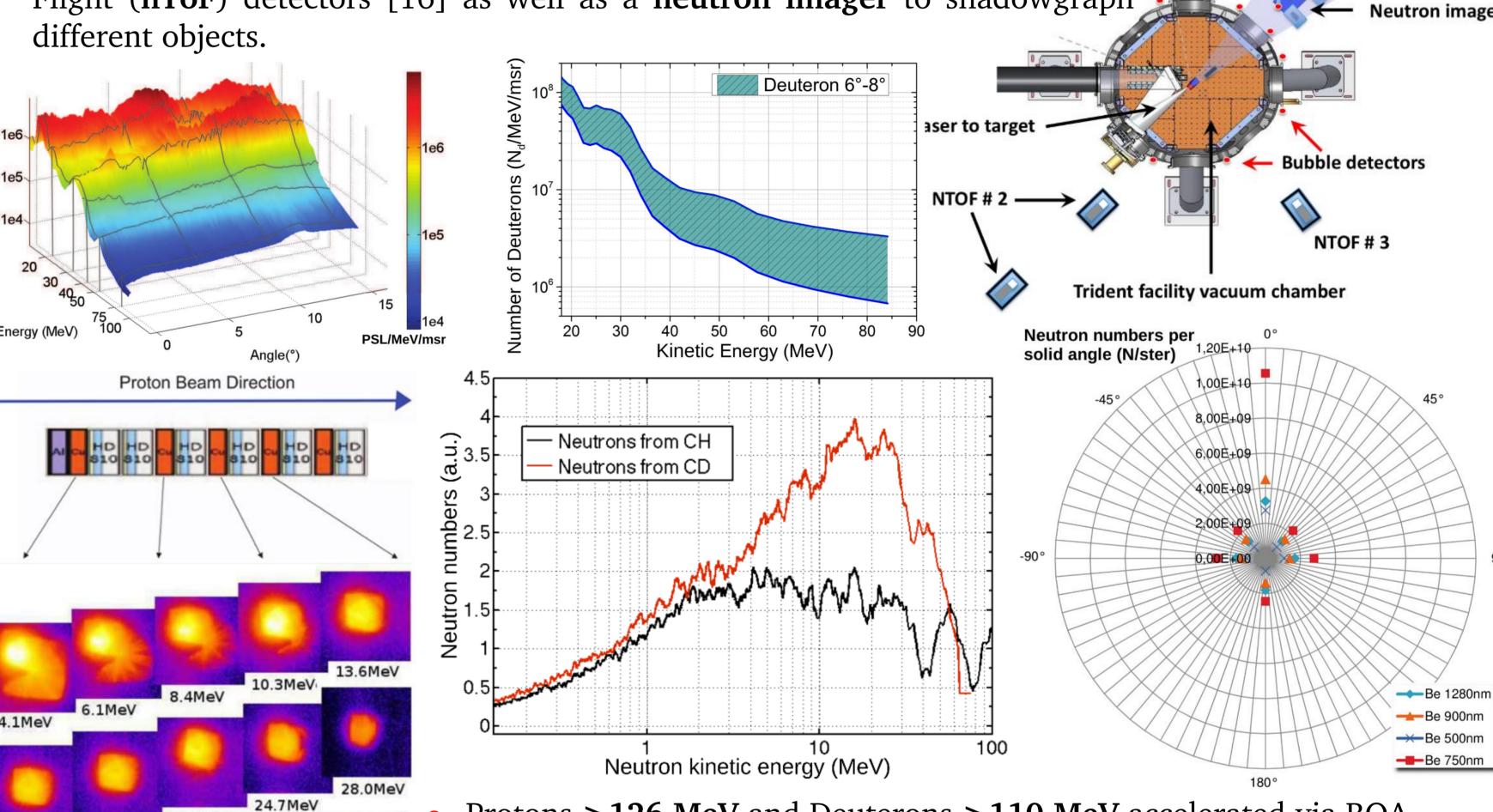
The investigation of alternative laser driven acceleration schemes has opened new possibilities to the topic of neutron generation. One promising candidate to effectively accelerate light to heavier ions is the laser Break-Out Afterburner (BOA) mechanism [6]. It is able to efficiently accelerate ions from the whole target volume by the interaction in the relativistic transparency regime.



- TNSA phase: Target opaque to laser light
 - > "Heating" => initial density decreases
 - \triangleright Higher inertia of rel. electrons => critical density increases
- Intermediate phase: Laser propagates "behind" classical critical density
- Volume-Heating
- **BOA phase:** Target relativistic transparent
 - > Laser interacts with electrons in under-dense plasma
 - > Buneman-Instability: Energy transfer from electrons to ions
 - > But: Electrons still gain energy in laser field
 - Indirect coupling between laser-energy and ion-momentum

Neutron Generation

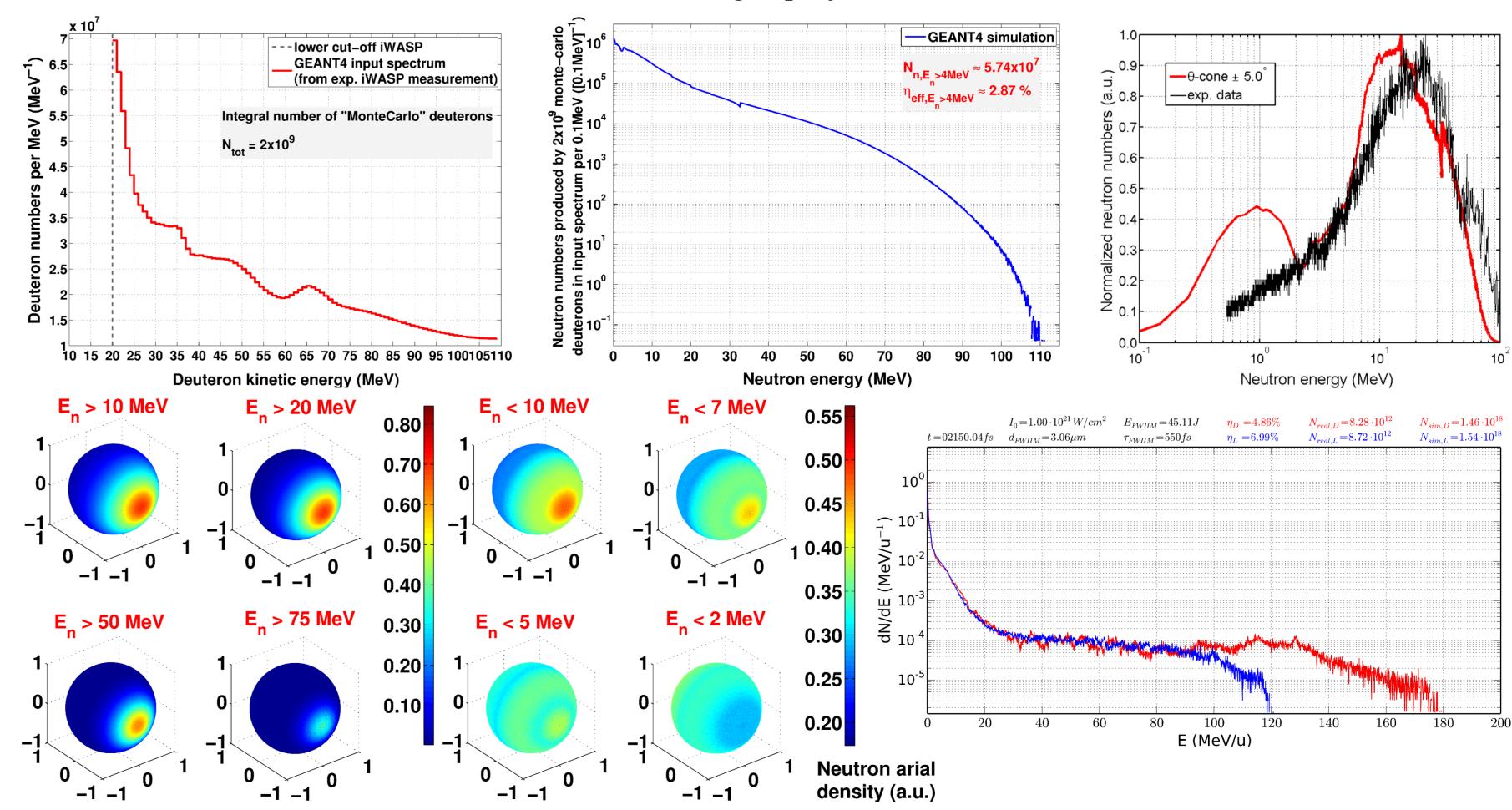
- Fig. 2: Sketch of neutron beam generation; adapted from [10]
- Laser driven projectiles (e.g. protons or deuterons) interact with thick catcher target (e.g. Beryllium converter)
 - > Inelastic nuclear reactions
- **Prompt** emission of neutrons
- > direct channels (e.g. break-up [8])
- > pre-equilibrium emission [9]
- > equilibrium emission
- Delayed generation of neutrons
- > after "underlying" radioactive decay
- o Generation of a **high energetic** (up to 100 MeV) and **forward directed** neutron beam
- Accompanied by low energetic neutrons homogenous distributed over the whole solid angle


- High Energy Density Matter (HEDM) and "fast" neutron radiography Complementary to x-ray radiography/scattering
- o Diagnostic for LAboratory PLAnetary Science (LAPLAS) and Heavy Ion Heating and EXpansion (HIHEX) campaigns at FAIR (HEDgeHOB, [11])
 - ➤ Low-entropy cylindrical compression and WDM (Warm Dense Matter) created by dynamical confinement
 - EOS measurement by quasi-isochoric heating and isentropic expansion

Experimental Methods and Results - published in [17] and [18]

We have carried out three experimental campaigns at the TRIDENT laser-facility at LANL to characterize and optimize the neutron generation with scope on neutron energy, yield and angular directionality.

• The optimization and characterization of the primary laser driven ion beam plays an important role and was conducted by Radiochromic film Imaging Spectroscopy (RIS, [12]), Nuclear based Imaging Spectroscopy (NAIS, [13]) as well as ion Wide Angle SPectroscopy (iWASP, [14]).


o For neutron beam characterization we used **Bubble** detectors [15], Time-of-Flight (nToF) detectors [16] as well as a neutron imager to shadowgraph different objects.

- Protons > 126 MeV and Deuterons > 110 MeV accelerated via BOA Characteristic "lobes" in spatial beam profile observed for BOA scheme
- Up to 1.19 ·10¹⁰ N/ster in forward direction measured
 - Forward emission with energies up to 110 MeV (pre-equilibrium)
 - "Peak" at 30 MeV for "small" forward directed cone (break up)
 - Homogenous 4π component at lower energy peaking around 3-5 MeV (equilibrium) with $\sim 2 \cdot 10^9$ N/ster

Monte Carlo And Particle-in-Cell Simulations – Roadmap

To model the experimental results, simulations with the Monte Carlo framework GEANT4 [19] where carried out. To precisely model the low energetic hadronic interactions for energies up to 200 MeV we have patched GEANT4 with the particle HighPrecision package [20]. It allows to incorporate purely data base driven nuclear models for inelastic interactions of light projectiles from the TENDL data base [21].

Future exploration of this **compact**, **bright** and **temporally short** laser driven neutron source

- Scheduled experiment at PHELIX laser to **demonstrate** its capabilities for the HEDgeHOB experiments.
- Proposal: TRIDENT laser to generate (d,d) and (T,d) fusion neutrons by using deuterated Lithium laser/catcher targets and to characterize the first time a laser driven Triton beam.

References

[13] M. Günther et al., Rev. Sci. Instrum. **84**, 073305 (2013) [17] M. Roth et al., Phys. Rev. Lett. 110, 044802 (2013) [1] G. S. Was, ISBN 978-3-540-49472-0, Springer (2007) [5] F. E. Merrill *et al.*, Rev Sci Instrum. **83**, 10 (2012) [9] P. E. Hodgson *et al.*, Nature **292**, 671-672 (1981) [21] A.J. Koning et al., Nucl. Dat. Sh. **113**, 2841-2934 (2012) [2] J. Fitter et al., ISBN 978-3-540-29108-4, Springer (2006) [6] Y. Lin et al., Phys. Plasmas 18, 063103 (2011) [10] D. Varentsov et al., TDR, HEDgeHOB (2005) [14] D. Jung et al., Rev. Sci. Instrum. **82**, 043301 (2011) [18] D. Jung et al., Phys. Plasmas **20**, 056706, (2013) **Sandia National Laboratories is a multi-program laboratory managed and operated by [15] R.H. Olsher et al., Radiat. Prot. Dos. 126, 326-332 (2007) [19] S. Agostinelli et al., Nucl. Inst. Meth. A 506, 250-303 (2003) Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the [7] D. Jung, dissertation, LMU Munich (2012) [3] G. L. Locher, Am. J. Roentgenol **36** (1):1-13 (1936) [11] HEDgeHOB, Executive Summary (2006) U.S. Department of Energy's National Nuclear Security Administration under contract DE-[20] E. Mendoza et al., IEEE Nucl. Sci. Symp. Conf. Rec. (2011) [4] D. Kraus et al., Phys Rev Lett. 111, 25 (2013) [8] C. Kalbach Walker et al., INDC(NDS)-0645 (2010) [12] F. Nürnberg et al., Rev. Sci. Instr. 80, 033301 (2009) [16] K. Falk et al., publication in preparation (2014)