Feasibility Study of χ_c identification with ALICE

Steffen Weber¹ for the ALICE collaboration

¹Technische Universität Darmstadt, Germany

Charmonium

Bound pairs of charm and anticharm quarks

- J/ψ : $m = 3097 \text{ GeV}/c^2$, discovered in 1974, proved existence of 4th quark
- χ_c : 1P triplet state:
 - χ_{c0} : $m = 3415 \text{ GeV}/c^2$ (not covered here, because of low BR to J/ ψ)
 - χ_{c1} : $m = 3511 \text{ GeV}/c^2$
 - χ_{c2} : $m = 3556 \text{ GeV}/c^2$

ALICE detector system

Charmonium and the QGP

Charmonium plays a crucial role as probe for the Quark-Gluon Plasma (QGP). Early on, a suppression mechanism in QGP based on color screening was proposed. Later, the idea of charmonium (re)generation in the QGP came up. It is described by competing models:

- In the **statistical hadronization model**, charm-anticharm quark pairs are produced in the initial hard collisions, thermalize in the QGP, and are distributed into hadrons at the chemical freeze-out.
- In the transport (kinetic) model, a continuous dissociation and regeneration of charmonium takes place in the QGP over its entire lifetime.

Measurements of the production rates of different charmonium states in Pb-Pb collisions at LHC should provide a definite answer to the question of charmonium production in the QGP and thereby answer fundamental questions about QGP and the QCD phase diagram.

Nuclear modification factor

The nuclear modification factor $R_{\rm AA}$ is defined as the ratio of the yield in nucleus-nucleus (AA) collisions to that expected from binary nucleon-nucleon collisions scaling (of production in pp collisions).

$$R_{AA}(p_{T}) = \frac{1}{N_{coll}} \cdot \frac{d^{2}N_{AA}/dp_{T}dy}{d^{2}N_{pp}/dp_{T}dy}$$

Two main mechanisms determine R_{AA} of charmonium:

- Suppression by color screening
- Enhancement through (re)generation in the QGP/ at phase boundary

At LHC energies, the $R_{\rm AA}$ is significantly larger than at lower energies.

Model predictions

- The competing models successfully describe the basic features of $J/\psi R_{AA}$.
- For heavier charmonia, such as $\psi(2S)$ and χ_c they make different predictions.

χ_c reconstruction in ALICE

- Used radiative decay channel $\chi_c \rightarrow J/\psi + \gamma$ (BR 34 %, 20 %)
- J/ψ reconstructed in dielectron decay channel (BR 5.94 %)
- Photons via conversion in detector material (probability ≈ 8 %)
- Very good momentum resolution allows to distinguish individual χ_c states.
 Yield too low to extract signal in current data.
 Δbout I_c = 0.1 pb⁻¹ in pp collisions needed to see a signal (estimation).
- About $L_{\text{int}} = 0.1 \text{ pb}^{-1}$ in pp collisions needed to see a signal (estimation).
- Usage of TRD electron PID will improve significance in Pb-Pb.

References

T. Matsui, H. Satz: J/ψ suppression by quark-gluon-plasma formation (Phys. Lett. B 178, 1986)

P. Braun-Munzinger and **J. Stachel**: (Non)thermal aspects of charmonium production and a new look at J/ψ suppression

(Phys. Lett. B490, 2000)

L. Musa and **K. Safarik** (editors): Letter of Intent for the Upgrade of the ALICE Experiment (LHCC-I-022, 2012)

ALICE collaboration: Centrality, rapidity and transverse momentum dependence of J/ψ suppression in Pb-Pb collisions

at $\sqrt{s_{NN}}$ = 2.76TeV (arXiv:1311.0214 [nucl-ex], 2013)

X. Zhao, R. Rapp: Medium modifications and production of charmonia at LHC (Nucl. Phys. A 859, 2011)

Y.P. Liu et al.: J/ψ Transverse Momentum Distribution in High Energy Nuclear Collisions (Phys. Lett. B 678, 2009)

A. Andronic et al.: The statistical model in Pb-Pb collisions at the LHC (J. Phys. G 38, arXiv:1210.7724, 2011)

