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Abstract. The future heavy-ion experiment CBM (FAIR/GSI, Darmstadt, Germany) will
focus on the measurement of rare probes at interaction rates up to 10 MHz with data flow of
up to 1 TB/s. The beam will provide free stream of particles without bunch structure. That
requires full online event reconstruction and selection not only in space, but also in time, so-
called 4D event building and selection. This is a task of the First-Level Event Selection (FLES)
package. The FLES reconstruction and selection package consists of several modules: track
finding, track fitting, short-lived particles finding, event building and event selection. The input
data are distributed within the FLES farm in a form of so-called time-slices, in which time
length is proportional to a compute power of a processing node. A time-slice is reconstructed
in parallel between cores within a CPU, thus minimising communication between CPUs. After
all tracks of the whole time-slice are found and fitted, they are collected into clusters of tracks
originated from common primary vertices. After that short-lived particles are found and the
full event building process is finished.

1. Introduction
The CBM experiment [1] will address fundamental questions of strong interaction physics. The
experiment will investigate the properties of highly compressed baryonic matter as it is produced
in relativistic nucleus-nucleus collisions. The CBM detector is designed to measure both bulk
observables with large acceptance and rare diagnostic probes such as charmed particles and
vector mesons decaying into lepton pairs.

Since the CBM physics program includes measurement of rare observables, the experiment
is required to cope with extremely high interaction rates in order to obtain sufficient statistics.
Namely, CBM is being designed to operate with collision rates up to 10 MHz, which was never a
case in heavy-ion experiments before. Taking into account that rare probes are to be measured in
a heavy-ion collision environment (up to 1000 charged particles per collision) one should expect
a data flow rate of 1 TB/s. Such a huge data rate makes it mandatory to select interesting events
online with a reduction factor of three orders of magnitude in order to meet a recordable data
rate of 1 GB/s. In addition to such high input collision rate and complicated event topology,
the full event reconstruction for the event selection is to be done online at the First Level Event
Selection (FLES) stage, due to absence of simple hardware triggers. This poses challenges for
the CBM computing and requires the algorithms to be both efficient and fast.



On top of that the FAIR accelerator beam will be a continuous stream of particles. As
a result data from different collisions may overlap in time, making traditional event-by-event
analysis not applicable in CBM. Instead of the event-based approach, a so called time-slice-based
reconstruction will be implemented. Such a time-slice, containing not only space coordinates,
but also time information from a number of possibly overlapping in time events, will be provided
as an input to the reconstruction algorithm to perform a so-called four-dimensional (4D) event
building and selection.

This problem is to be solved on a dedicated many-core CPU/GPU computer farm by
the FLES package [2]. The package is being developed as a platform and operating system
independent package, which includes several modules of the selection chain: track finding, track
fitting, short-lived particles finding, event building and event selection. It has to be fast, precise
and able to fully utilise potential of modern many-core architectures in order to be suitable for
online data processing. The Cellular Automaton (CA) track finder [3] is used to reconstruct
tracks of charged particles within a time-slice.

2. Event-based Cellular Automaton track finder
Finding trajectories of charged particles in a typical dense environment of heavy ion collisions
is often considered as the most challenging and time-consuming stage of the reconstruction
procedure. The reason for that usually is a very specific problem of dealing with combinatorial
enumeration, which grows fast with track multiplicity, while grouping together detector
measurements into tracks in the presence of noise. The CA track finder proposes a solid
solution for the combinatorial search optimisation. Namely, this method benefits from drastic
suppression of combinatorial enumeration by introducing a phase of building up short track
segments at an early stage before going into the main search. In addition to that, the method
is intrinsically local with respect to data processing and, thus, can be run in parallel on modern
many-core CPU/GPU computer architectures. The CA method features made the algorithm an
appropriate solution for the track reconstruction in the main tracking detector Silicon Tracking
System (STS).

In the case of the CBM experiment short track segments at the first stage are triplets:
all possible three measurement combinations on a neighboring STS stations are checked to
be physical taking into account the multiple scattering. The hit measurement information is
locally processed and stored in a new consolidation extent format, namely triplets, with no need
to consider individual hits again later in the algorithm. The optimization is also achieved due to
saving computational and memory access efforts by combining tasks. For example, at the stage
of triplets creation the track finder also checks on a fly the neighboring relation between the
triplets in order to remember potential neighbors and estimate the position of the triplet in the
track. These links are stored together with triplets and used later at the next stage of connecting
triplets in order to build track candidates out of them. The neighboring information allows to
get a tree of candidates just by following the neighboring relation. Moving from the first triplet
to the next neighboring triplet, the track finder obtains the full tree of possible tracks. In the
last stage a competition between the track candidates takes place: only the longest tracks with
best χ2-value sharing no hits in common are to survive.

The task of finding tracks in CBM is split in several iterations to make the reconstruction fast
and reliable in the case of a high track density: at the first iteration track finder searches for high-
momentum primary tracks only, at the second one — for low-momentum primary tracks, and
at the last one — for secondary tracks as well. After each iteration all hits from reconstructed
tracks are marked as used and removed from further consideration, thus significantly reducing
the combinatorial enumeration.

For the performance purposes we define the tracking efficiency as a ratio of reconstructed and
reconstructable tracks. A track is considered as reconstructable if it has at least 4 consecutive



Monte-Carlo points. By definition, a reconstructed track is assigned to a generated particle, if
at least 70% of its hits have been produced by the particle. A generated particle is regarded as
found, if it has been assigned to at least one reconstructed track. If a particle is found more
than once, all additionally reconstructed tracks are regarded as clones. A track is called ghost,
if it is not assigned to any generated particle according to the 70% criterion.

The track reconstruction efficiency for different sets of tracks and the level of clones and
ghost tracks for the case of event-based analysis are shown in the first (3D) column of Table 1.
The majority of tracks of particular physics interest are particles with momentum higher than
1 GeV/c originating from the region very close to the collision point (e.g. decay products of
D-mesons, charmonium, light vector mesons). The efficiency for this group is 96.1%. Since
the high-momentum secondary particles (e.g. from decays of K0

s and Λ and cascade decays of
Ξ and Ω) are created far from the primary vertex, their reconstruction is more complex and
the efficiency is 76.6%. A significant multiple scattering influence on low-momentum tracks in
the material of the detector system and larger curvature in the magnetic field make it a more
complicated task to reconstruct them. Thus, their reconstruction efficiency is 79.8%. The levels
of clones and ghost tracks are 0.4% and 0.2% respectively.

3. Track finding in the case of extreme track multiplicities
As a special study of the CA track finder stability the algorithm behavior was investigated
with respect to the track multiplicity. For the study a super-event, which includes a number of
minimum bias events, was reconstructed with no time information taken into account. To create
such a super-event we combine space coordinates of hits from a number Au+Au minimum bias
events at 25AGeV ignoring such information as event number or time. The super-event is given
to the CA track finder as an input and reconstructed as a regular event with no changes in the
reconstruction procedure. It is important to mention that such an approach does not precisely
correspond to a pile-up simulation, since in this situation fake hits in STS are created from strips
on the event level, not within the whole super-event.

Varying the number of minimum bias events in a super-event we have studied the track
reconstruction efficiency with respect to the track multiplicity. The efficiency dependence is
stable (see Figure 1). In particular, the efficiency of the algorithm decreases by 4% only for the
extreme case of 100 minimum bias events in the super-event (see (3+1)D column of Table 1),
comparing to the case of single minimum bias events (see 3D column of Table 1). The efficiencies
for the reference tracks (p > 1 GeV/c) remains high for all track multiplicities range. The
efficiencies for extra (100 MeV/c < p < 1 GeV/c) and secondary tracks are also stable. The
level of ghost tracks is always beyond 10% and changes slowly.

Summarising, the CA track finder reconstruction algorithm shows high stability with respect
to the track multiplicities up to the extreme case of more than 10 000 reconstructed tracks.

4. In-event level parallelism of CA track finder
The newest high-performance architectures tend to have more CPUs, number of physical and
logical cores per processor and longer vector registers. This tendency requires reconstruction
algorithms to scale with number of cores and vector width. A vectorised sequential version of
the CA track finder was taken as a starting point for developing a parallel one. Each step of the
algorithm was parallelilized inside a super-event with OpenMP [4] and Pthreads [5] interfaces.

The sequential implementation of algorithms needed to undergo certain changes in order to
be run in parallel. Some parts of the code, being essentially sequential, had to be significantly
changed. Due to the fact that on modern architectures calculating time is negligible in
comparison with data access time, memory optimisation and data structures scheme are essential
for parallel programming. One should keep frequently used data in the fast cache memory and
thus reduce the time for memory access, since the main memory is slower by about two orders



Efficiency, % 3D (3+1)D 4D

All tracks 83.8 80.4 83
Primary high-p 96.1 94.3 92.8
Primary low-p 79.8 76.2 83.1
Secondary high-p 76.6 65.1 73.2
Secondary low-p 40.9 34.9 36.8
Clone level 0.4 2.5 1.7
Ghost level 0.1 8.2 0.3
Time/event/core 8.2 ms 31.5 ms 8.5 ms

Table 1: Track reconstruction performance
for 3D event-by-event analysis, super-event
(3+1)D and time-based 4D reconstruction for
100 minimum bias Au+Au collisions at 25 AGeV.
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Figure 1: Track reconstruction efficiencies and
ghost rate for different sets of tracks versus track
multiplicity.

of magnitude than the low-level cache. A lot of optimisation efforts are required for a certain
computing architecture in order to benefit from the layered structure of the CPUs caches.

The optimisation and testing of the parallel CA track finder were performed on a server with
4 Intel Xeon E7-4860 processors with 10 physical cores each. The processor supports the Intel
Hyper-Threading technology: architecturally, every core consists of two logical ones. Unlike the
multiple processor systems with independent processor units, in case of the Hyper-Threading
the logical cores share some resources, like caches and the execution engine. As a result a logical
core doesn’t give 100% of a performance gain, but an estimated gain of 30% instead.

As it was mentioned above, the algorithm consists of several parts. First, a short (2% of the
execution time) initialisation takes place, when we prepare the hit information for tracking. The
main and the most time consuming part of triplet construction takes about 90% of the sequential
execution time. Out of triplets we construct tracks, that takes about 4%, and when we prepare
information for the next iteration (3.4%). All steps of the algorithm were parallelised inside a
super-event using different sources of parallelism in each step: hits in the initialisation and the
final stages, triplets for the major part, track candidates for the track construction step. In
order to have enough sources of parallelism to fill a whole CPU, a super-event of 100 minimum
bias events was processed. The resulting speed-up factors for different steps as well as for the
full algorithm within one CPU (20 hyper-threaded logical cores) are presented in Figure 2.

The algorithm shows a linear scalability. Due to hyper-threading theoretically one can expect
the maximum speed-up factor of about 13 on such a CPU. The achieved speed-up factor is 10.6
for the CA track finder reconstruction algorithm on a 10 hyper-threaded physical cores CPU [6].

5. Reconstruction of time-slices
Since resolving different events is a non-trivial task in CBM, an efficient time-based track finder
is essential in order to define exact borders of events within a time-slice and grouping tracks
into event-corresponding clusters. In order to include time measurement into the algorithm an
event start time was assigned to each minimum bias event in a 100 events group during the
simulation phase. The start time was simulated with the Poisson distribution, assuming the
interaction rate of 107 Hz. A time stamp, which we assign to a certain hit, was simulated by
this event start time plus a time shift due to the time of flight from the collision point to a
detector plane. In order to obtain time measurement we smear a hit time stamp according to
the Gaussian distribution with the σ value of the detector resolution 5 ns.

The time measurement information is to be used in the tracking. At the triplet building
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for different steps and the full algorithm on Intel
Xeon E7-4860 CPU with 10 physical cores and
hyper-threading.
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Figure 3: Distribution of time measurement in a
part of a time-slice: hit time measurement (light
blue), track time (black).

stage triplets are only build out of hits with the same time measurement within 3σ of the
detector resolution. It is a justified assumption, since the time of flight between detector planes
is negligible in comparison to the detector precision. The same rule is valid in the search for
neighboring triplets. Apart from that, the reconstruction is performed in a regular way.

Including the time information in the tracking has resulted in a higher efficiency of the CA
track finder (see 4D column in Table 1). In particular the time information drastically decreased
ghost and made the reconstruction 3.7 times faster than without the time information ((3+1)D
column of Table 1). The speed now is 8.5 ms and comparable with the event-based analysis.

The initial distribution of hits measurements representing the complexity of defining event
borders in an overlapping region of a time-slice at the interaction rate of 107 Hz is shown
Figure 3 with blue color. The resulting distribution of reconstructed track measurements is
shown in black. Reconstructed tracks clearly represent event-corresponding groups.

6. Conclusions
The standalone FLES package for the CBM experiment contains all reconstruction stages: track
finding, track fitting, short-lived particles finding, event building and event selection. The
Cellular Automaton track finder is used to reconstruct tracks of charged particles in a time-
slice. The algorithm is parallelized between cores with a speed-up factor of 10.6 on a CPU with
10 physical cores with hyper-threading. Since resolving different events is a non-trivial task
in the CBM experiment, the FLES package includes an event building, the process of defining
exact borders of events within a time-slice. Thus, the CA track finder is suitable for the task of
event building for the CBM experiment.
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