

Preparation and Commissioning of Day-One Experiment at COSY

Qiang Hu IKP-1, FZJ, Germany

- Motivation of Day-One experiment
- Recoil detector test
- Commissioning experiment at COSY
- Conclusion

Laboratory test for the recoil detector

Detector layout

Energy spectra of ²⁴⁴Cm @ 125 K

Amplitude vs. Temperature (Strips)

Amplitude vs. Temperature (Rear)

Resolution vs. Temperature (Strips)

Resolution vs. Temperature (Rear)

125 K was chosen as working temperature since the leakage current of germanium detectors increased quickly above 125 K

Commissioning experiment at COSY

Figure 1.3: Schematic view of the COSY storage ring at Forschungszentrum Juelich.

D. Ecersmann, Analysis of Spin Coherence Time at the Cooler Synchrotron, Feb. 2013

Beam runs

Target: Cluster-jet target (H₂)

Thickness: < 2 mm

Density: $\sim 10^{14}$ /cm³

Data size

Time	P _b (GeV/c)	File size (GB)
2013.7.15 ~ 2013.7.21	1.7	\sim 10
	3.2	\sim 22
2013.9.23 ~ 2013.9.29	2.5	\sim 23
	2.8	\sim 56
	3.2	\sim 30

Data of July after preliminary calibration

Multiplicity

Two dimensional spectra of Si_#2 & Ge_#2 (P_b=3.2 GeV/c, July)

Multiplicity distribution (P_b=3.2 GeV/c, July)

Clusterization (P_b=3.2 GeV/c, July)

Energy comparison ($P_b=3.2 \text{ GeV/c}$, July)

t-spectrum by using energy (P_b=3.2 GeV/c, July)

Conclusion

- The strips' resolutions of the silicon (<20 KeV) and germanium (<30 KeV) detectors meet expectation</p>
- The optimal working temperature for germanium detector has been determined
- Clusterization for energy reconstruction has been implemented

Next steps

- To determine the dead layer's thickness of Si & Ge detectors for energy calibration
- To study the beam-target overlapping position by Monte-Carlo simulation
- ❖ To construct the t-spectrum

Thank you for your attention!

Assembling

Fig. 5. Plot of ϵ versus temperature for 5.477-MeV α particles. incident upon silicon detector. Solid-line equation given by: $\epsilon = 2.2E_{\mathfrak{g}}(T) + 0.96 E_{\mathfrak{g}}^{3/2}(T) \exp(0.75 E_{\mathfrak{g}}(T)/T)$. $E_{\mathfrak{g}}(T)$ data are from Smith.

PR140(1965)A2089

Measurement method

luminosity-independent measurement

Optical theorem

Parameterization expression

$$\frac{(1+\rho^2)}{16\pi(\hbar c)^2} \frac{\sigma_T^2}{\frac{dN_{el}^n}{dt}\Big|_{t=0}} = \frac{1}{L}$$

PRL68,1992,2433-2436 PLB537,2002,41-44

$$\frac{1}{L}\frac{dN_{el}}{dt} = \frac{d\sigma}{dt}$$

$$= \frac{4\pi\alpha^2 (\hbar c)^2 G^4(t)}{|t|^2}$$

$$+ \frac{\alpha(\rho + \alpha\varphi)\sigma_p G^2(t)}{|t|} \exp(-b)t//2$$

$$+ \frac{\sigma_p^2 (1+\rho^2)}{16\pi (\hbar c)^2} \exp(-b)t/)$$

