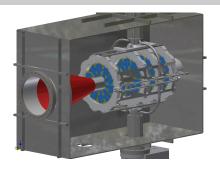
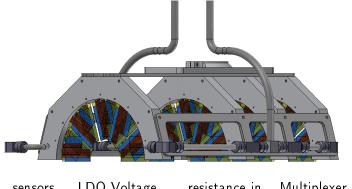
The cooling system of the luminosity detector

Heinrich Leithoff


Helmholtz Institut Mainz

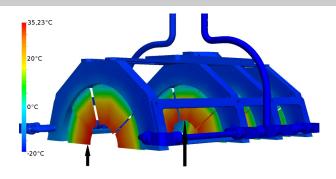
PANDA-Collaboration-Meeting Darmstadt December 10, 2013

Helmholtz Institute Mainz


Overview

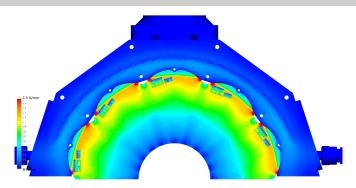
- Cooling of the luminosity detector
- Production of the cooling structure
- Comparison of heat distribution measurements to FEM simulations

1 / 16

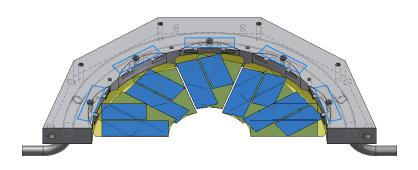

General setup

sensors	LDO Voltage	resistance in	Multiplexer
	regulator	flexcables	etc.
1120 W	320W	160W	\sim 100W

Total estimated heat load per half detector: \sim 1 kW


Temperature distribution

	warmest diamond	coldest diamond
$\frac{T_{min}}{\circ C}$	-11.27	-13.89
$\frac{T_{max}}{\circ C}$	35.23	32.03


Temperature along tracks parallel to beam varies $\sim 1^{\circ}\text{C}$ FEM-simulation done with Autodesk Simulation CFD 2013

Temperature Gradient

- Temperature gradient varies on the diamond
- High values near the cooling structure (> 1.5 $\frac{K}{mm}$)
- ullet interesting measurements are in region with $> 1~{K\over mm}$

Cooling support with sensors

Requirement: Good thermal conducting contact between cooling pipe and aluminum

ightarrow Embedding the pipe in molten aluminum

Melting aluminum around stainless steel pipes

- Casting mould with stop off and cooling pipe
- The pipe can move in one direction to minimize internal stress

6 / 16

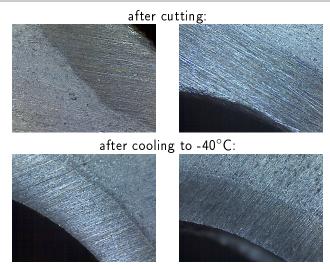
Casting mould after first melting process

- First test done under vacuum
- good results, but the vacuum furnace gets really dirty

Comparison of processes and materials

material	Т	t	condition	machining and result
AlMg4.5Mn	750°C	60min	vacuum argon	Cutting: few bubbles, mostly near surface; good contact aluminum-steel
Al99.5	730°C	90min	argon argon	Cutting: almost no bubbles at all, good contact aluminum-steel
AlMg4.5Mn	730°C	90min	argon argon	CNC machining: few bubbles
AlCuMgPb	730°C	90min	argon argon	CNC machining: many bubbles, not really usable

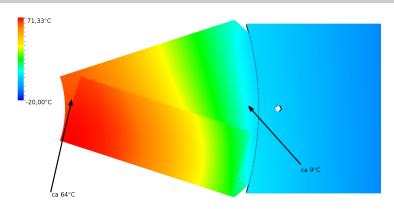
Comparison of materials and processes



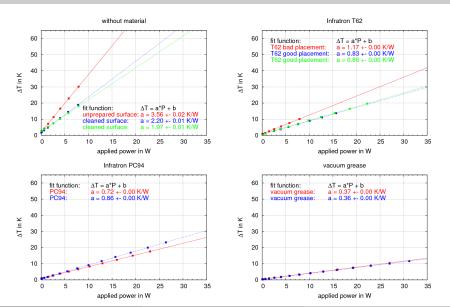
Aluminum steel contact after cooling


No gap between the materials, very good contact

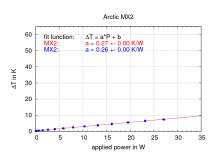
Next steps


- Slight adjustment of process needed
- Production of halfplanes planned in Jülich

Test of the aluminum-diamond contact


- Setup with copper dummy
- Comparison of FEM results with measurements
- Test and comparison of several contact materials

FEM-simulation and measurement



- ullet Simulated temperature difference $\sim 55^{\circ} \mathrm{C}$
- Measured temperature difference (two Pt100): 50°C
- High radial temperature gradient (up to $2\frac{K}{mm}$)

Contact materials

Contact materials 2

Upper limit for the material transition temperature rise:

no material	graphit foil	PC94	vacuum grease	MX2
$\sim 2,2\frac{^{\circ}C}{W}$	$\sim 0.86 \frac{^{\circ}C}{W}$	$\sim 0.86 \frac{^{\circ}C}{W}$	$\sim 0,37\frac{^{\circ}C}{W}$	$\sim 0,27\frac{^{\circ}C}{W}$

These contain $\sim 0, 1 \frac{{}^{\circ} C}{W}$ due to the measurement setup

Summary and outlook

- Simulations of thermal behaviour promising
- Material transition effects solvable
- Cooling pipe aluminum melting process working, production possible

What is next:

- Thermal behaviour of the diamond wafer
- Testing of one halfplane with full worst case heat load
- Gluing HV-MAPS on diamond