Alignment within one module of $\bar{P} A N D A$ Luminosity Detector

R. Klasen, M. Fritsch, P. Jasinski

Helmholtz-Institut Mainz
Johannes Gutenberg-Universität Mainz
PANDA Collaboration Meeting
December 9, 2013

Luminosity pixel detectors

- pixel sensors glued on thin diamond plane from both sides
- quality fluctuations \rightarrow only few sensors grouped to arrays of $(2 \times 4) \mathrm{cm}^{2}$ (green), rest will be $(2 \times 2) \mathrm{cm}^{2}$ sensors (grey)
- full disc coverage $\rightarrow 36^{\circ}$ angle between sensors
- exact position and rotation of sensors must be known for track reconstruction

Pixel coincidence approach

Using overlapping area

- sensors will overlap partially
- use overlapping area to determine the alignment of each sensor pair

Pixel coincidence approach

- charged particle will (ideally) activate single pixel in every sensor
- pixels on front and back must be close (depends on angle of entry and energy of particle)
- sensors have discrete pixels \rightarrow approach will have certain maximum accuracy

transformation matrices

- translation + rotation + scaling can be expressed as single homogenous 4×4 matrix
- \Rightarrow alignment of two sensors can be expressed as 4×4 matrix!
- hopefully, no scaling here (sensors should have same size)
- algorithm needed to find matrix from set of pixel hit pairs

getting info from 4×4 transformation matrix

Translation matrix:

$$
T(x, y, z)=\left(\begin{array}{llll}
1 & 0 & 0 & x \\
0 & 1 & 0 & y \\
0 & 0 & 1 & z \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Rotation matrix:

$$
R(\alpha, \beta, \gamma)=\left(\begin{array}{cccc}
\cos [\beta] \cos [\gamma] & \cos [\gamma] \sin [\alpha] \sin [\beta]-\cos [\alpha] \sin [\gamma] & \cos [\alpha] \cos [\gamma] \sin [\beta]+\sin [\alpha] \sin [\gamma] & 0 \\
\cos [\beta] \sin [\gamma] & \cos [\alpha] \cos [\gamma]+\sin [\alpha] \sin [\beta] \sin [\gamma] & -\cos [\gamma] \sin [\alpha]+\cos [\alpha] \sin [\beta] \sin [\gamma] & 0 \\
-\sin [\beta] & \cos [\beta] \sin [\alpha] & \cos [\alpha] \cos [\beta] & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

α : rotation about \times axis
β : rotation about y -axis
γ : rotation about z-axis
Small steps \Rightarrow small angle approximation. We get:

Rotation matrix

$$
R(\alpha, \beta, \gamma)=\left(\begin{array}{cccc}
1 & -\gamma & \beta & 0 \\
\gamma & 1 & -\alpha & 0 \\
-\beta & \alpha & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

approximated

$$
M(x, y, z, \alpha, \beta, \gamma)=\left(\begin{array}{cccc}
1 & -\gamma & \beta & x \\
\gamma & 1 & -\alpha & y \\
-\beta & \alpha & 1 & z \\
0 & 0 & 0 & 1
\end{array}\right)
$$

in our case, α and β and z are $\approx 0 \Rightarrow$ use time stamp as z coordinate

Final matrix

$$
M(x, y, z, \alpha, \beta, \gamma)=\left(\begin{array}{cccc}
1 & -\gamma & 0 & x \\
\gamma & 1 & 0 & y \\
0 & 0 & 1 & \text { time } \\
0 & 0 & 0 & 1
\end{array}\right)
$$

that way, matrix even tells time of flight between sensor layers

computed alignment matrices / path

- go from sensor sensor 1 via matrix 1 to 2 to sensor 2
- go from sensor sensor 2 via matrix 2 to 3 to sensor 3
- matrix from 1 to $3=2 \mathrm{to} 3 * 1 \mathrm{o} 2$
this can be done for all sensors \Rightarrow all sensors are aligned
- algorithm to align two clouds of points in three dimensions (i.e. translation, rotation, scaling)
- here: determine transformation matrices from one sensor to every other sensor
- 9 overlapping areas $\rightarrow 9$ matrices
\Rightarrow position of every sensor with respect to reference sensor is known

Iterative Closest Point Algorithm

Inputs:

- points from two raw scans
- initial estimation of the transformation
- criteria for stopping the iteration

Output:

- refined transformation

Iterative Closest Point Algorithm

Singular Value Decomposition

Singular Value Decomposition

- is a factorization of a matrix
- decompose transformation matrix
\rightarrow rotation + translation + scaling

Procedure

- subtract center of mass from every point
- point sets then are:

$$
\begin{aligned}
& X^{\prime}=x_{i}-\mu_{x}=x_{i}^{\prime} \\
& P^{\prime}=p_{i}-\mu_{p}=p_{i}^{\prime}
\end{aligned}
$$

- construct matrix W :

$$
\begin{equation*}
W=\sum_{i=1}^{N_{p}} x_{i}^{\prime} p_{i}^{\prime T} \tag{1}
\end{equation*}
$$

- and denote singular value decomposition (SVD) of W by:

$$
W=U\left(\begin{array}{ccc}
\sigma_{1} & 0 & 0 \\
0 & \sigma_{2} & 0 \\
0 & 0 & \sigma_{3}
\end{array}\right) V^{T}
$$

where $U, V \in \mathbb{R}^{3 \times 3}$ are unitary and $\sigma_{1}, \sigma_{2}, \sigma_{3}$ are singular values of W

- rotation and translation are:

$$
\begin{array}{r}
R=U V^{T} \\
t=\mu_{x}-R \mu_{p}
\end{array}
$$

Iterative Closest Point Algorithm

algorithm uses loop \Rightarrow termination criterion required!

- maximum number of iterations achieved
- difference between M_{i} and $M_{i+1}<$ threshold additional checks for quality:
- number of iterations <4 (but only if initial matrix is known!)
- RMS distance (front pixel \rightarrow back pixel) $<0,5$ pixels

Testing

Pre-processing

- simulation of perfectly aligned sensors (no shift in x and y, no rotation)
- firing lots of events
- sorting to hit pairs (one pixel hit on front correlates to exactly one on back)
- event sorter must be very thorough!

Testing Procedure

- dividing available pairs to 1000 bunches (by bootstrapping)
- using ≈ 100.000 pixel pairs (best case) for ICP
- difference from ideal matrix should be small!
taking ≈ 10.000 elements from pool of ≈ 100.000 per entry
offset in x direction

result should be as close to 0 as possible
taking ≈ 10.000 elements from pool of ≈ 100.000 per entry
offset in y direction

result should be as close to 0 as possible
taking ≈ 10.000 elements from pool of ≈ 100.000 per entry
rotation in $x-y$ plane

result should be as close to 0 as possible

Result:

- simulated geometry can be aligned on micrometer and sub-miliradian scale!
example for transformation from one sensor to its neighbour

direction	value	error
x	$-0.18 \mu \mathrm{~m}$	$1.75 \mu \mathrm{~m}$
y	$0.48 \mu \mathrm{~m}$	$2.99 \mu \mathrm{~m}$
rotation	0.041 mrad	0.152 mrad

Pixel coincidence method

- using charged particles tracks and responding pixels
- accuracy surpasses fraction of pixel length
- simultaneously firing pixels must be close (rough estimate of alignment must be known)
- high statistics \rightarrow high accuracy

Iterative Closest Point Algorithm

- finds transformation matrix to transform one set of points onto a corresponding set of points
- quality heavily depends on quality of event pre-processing

