Alignment within one module of PANDA Luminosity Detector

R. Klasen, M. Fritsch, P. Jasinski

Helmholtz-Institut Mainz Johannes Gutenberg-Universität Mainz

PANDA Collaboration Meeting December 9, 2013

Luminosity pixel detectors

- pixel sensors glued on thin diamond plane from both sides
- quality fluctuations \rightarrow only few sensors grouped to arrays of $(2 \times 4)cm^2$ (green), rest will be $(2 \times 2)cm^2$ sensors (grey)
- full disc coverage \rightarrow 36° angle between sensors
- exact position and rotation of sensors must be known for track reconstruction

Pixel coincidence approach

Using overlapping area

- sensors will overlap partially
- use overlapping area to determine the alignment of each sensor pair

Pixel coincidence approach

Pixel coincidence approach

- charged particle will (ideally) activate single pixel in every sensor
- pixels on front and back must be close (depends on angle of entry and energy of particle)
- \bullet sensors have discrete pixels \to approach will have certain maximum accuracy

transformation matrices

- ullet translation + rotation + scaling can be expressed as single homogenous 4 imes 4 matrix
- ullet \Rightarrow alignment of two sensors can be expressed as 4 imes 4 matrix!
- hopefully, no scaling here (sensors should have same size)
- algorithm needed to find matrix from set of pixel hit pairs

Translation matrix:

$$T(x,y,z) = \begin{pmatrix} 1 & 0 & 0 & x \\ 0 & 1 & 0 & y \\ 0 & 0 & 1 & z \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Rotation matrix:

$$R(\alpha,\beta,\gamma) = \begin{pmatrix} \cos[\beta]\cos[\gamma] & \cos[\gamma]\sin[\alpha]\sin[\beta] - \cos[\alpha]\sin[\gamma] & \cos[\alpha]\cos[\gamma]\sin[\beta] + \sin[\alpha]\sin[\gamma] & 0\\ \cos[\beta]\sin[\gamma] & \cos[\alpha]\cos[\gamma] + \sin[\alpha]\sin[\beta] & -\cos[\gamma]\sin[\alpha] + \cos[\alpha]\sin[\beta]\sin[\gamma] & 0\\ -\sin[\beta] & \cos[\beta]\sin[\alpha] & \cos[\beta]\sin[\alpha] & 0\\ 0 & 0 & 1 \end{pmatrix}$$

- α : rotation about x axis
- β : rotation about y-axis
- γ : rotation about z-axis

Small steps \Rightarrow small angle approximation. We get:

Rotation matrix

$$R(\alpha, \beta, \gamma) = \begin{pmatrix} 1 & -\gamma & \beta & 0 \\ \gamma & 1 & -\alpha & 0 \\ -\beta & \alpha & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Transformation matrix in readable form

approximated

$$M(x, y, z, \alpha, \beta, \gamma) = \begin{pmatrix} 1 & -\gamma & \beta & x \\ \gamma & 1 & -\alpha & y \\ -\beta & \alpha & 1 & z \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

in our case, α and β and z are \approx 0 \Rightarrow use time stamp as z coordinate

Final matrix

$$M(x, y, z, \alpha, \beta, \gamma) = egin{pmatrix} 1 & -\gamma & 0 & x \ \gamma & 1 & 0 & y \ 0 & 0 & 1 & time \ 0 & 0 & 0 & 1 \end{pmatrix}$$

that way, matrix even tells time of flight between sensor layers

computed alignment matrices / path

- go from sensor sensor 1 via matrix 1to2 to sensor 2
- go from sensor sensor 2 via matrix 2to3 to sensor 3
- matrix from 1to3 = 2to3 * 1o2

this can be done for all sensors \Rightarrow all sensors are aligned

Iterative Closest Point Algorithm

- algorithm to align two clouds of points in three dimensions (i.e. translation, rotation, scaling)
- here: determine transformation matrices from one sensor to every other sensor
- 9 overlapping areas \rightarrow 9 matrices
- ⇒ position of every sensor with respect to reference sensor is known

Iterative Closest Point Algorithm

Inputs:

- points from two raw scans
- initial estimation of the transformation
- criteria for stopping the iteration

Output:

refined transformation

Iterative Closest Point Algorithm

R. Klasen (HIM/JGU) Dec 9, 2013 Sensor Alignment 10/20

Singular Value Decomposition

compute R matrix and t vector via SVD

Singular Value Decomposition

- is a factorization of a matrix
- decompose transformation matrix
 - \rightarrow rotation + translation + scaling

Procedure

- subtract center of mass from every point
- point sets then are:

$$X' = x_i - \mu_x = x_i'$$

$$P' = p_i - \mu_p = p'_i$$

Singular Value Decomposition

construct matrix W:

$$W = \sum_{i=1}^{N_p} x_i' {p_i'}^T \tag{1}$$

and denote singular value decomposition (SVD) of W by:

$$W = U \begin{pmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \end{pmatrix} V^T$$

where $U, V \in \mathbb{R}^{3\times 3}$ are unitary and $\sigma_1, \sigma_2, \sigma_3$ are singular values of W

• rotation and translation are:

$$R = UV^{T}$$
$$t = \mu_{x} - R\mu_{p}$$

Iterative Closest Point Algorithm

R. Klasen (HIM/JGU) Dec 9, 2013 Sensor Alignment 13/20

Termination criteria

algorithm uses loop \Rightarrow termination criterion required!

- maximum number of iterations achieved
- difference between M_i and M_{i+1} < threshold

additional checks for quality:

- number of iterations < 4 (but only if initial matrix is known!)
- RMS distance (front pixel \rightarrow back pixel) < 0,5 pixels

R. Klasen (HIM/JGU) Sensor Alignment 14/20 Dec 9, 2013

Pre-processing

- simulation of perfectly aligned sensors (no shift in x and y, no rotation)
- firing lots of events
- sorting to hit pairs (one pixel hit on front correlates to exactly one on back)
- event sorter must be very thorough!

Testing Procedure

- dividing available pairs to 1000 bunches (by bootstrapping)
- ullet using pprox 100.000 pixel pairs (best case) for ICP
- difference from ideal matrix should be small!

resultant alignment, matrix 1 to 2

taking ≈ 10.000 elements from pool of ≈ 100.000 per entry

result should be as close to 0 as possible

resultant alignment, matrix 1 to 2

taking ≈ 10.000 elements from pool of ≈ 100.000 per entry

result should be as close to 0 as possible

resultant alignment, matrix 1 to 2

taking ≈ 10.000 elements from pool of ≈ 100.000 per entry

result should be as close to 0 as possible

That means:

Result:

• simulated geometry can be aligned on micrometer and sub-miliradian scale!

example for transformation from one sensor to its neighbour

direction	value	error
X	-0.18μ m	1.75μ m
У	0.48μ m	$2.99 \mu m$
rotation	0.041 <i>mrad</i>	0.152 <i>mrad</i>

R. Klasen (HIM/JGU) Dec 9, 2013 Sensor Alignment 19/20

Conclusion

Pixel coincidence method

- using charged particles tracks and responding pixels
- accuracy surpasses fraction of pixel length
- simultaneously firing pixels must be close (rough estimate of alignment must be known)
- ullet high statistics o high accuracy

Iterative Closest Point Algorithm

- finds transformation matrix to transform one set of points onto a corresponding set of points
- quality heavily depends on quality of event pre-processing

R. Klasen (HIM/JGU) Dec 9, 2013 Sensor Alignment 20/20