Physics at High Baryon Densities

CBM@FAIR

Alexander Schmah CO. Lawrence Berkeley National Lab **International Conference on Science** and Technology for FAIR in Europe 2014

2100 C. C.

19:000 C.S.C.S.

14:5 Cert

Ce

oriz cel

0.19 Cer BCE

BERKELEY LAB

Outline

- Introduction to the physics at high baryon densities
- Some selected highlights from running experiments
- Conclusions and why we need to focus on lower energies

→ Compressed Baryonic Matter!
 → Highest density at freeze-out at ~ √s_{NN} = 8 GeV

October 2014

Basic Motivation: Phase Diagrams

Water (Electromagnetism)

Quark Matter (QCD)

- Can we establish/study a QCD phase diagram with
- 1.Phase transitions?
- 2.Critical point?
- 3.Other phases of matter, e.g. Quarkyonic?

The QCD Phase Diagram

Basic motivation: Exploration of the QCD phase diagram

- •Hadron gas phase at low T and/or μ_B
- We expect from QCD lattice calculations a cross over at high energies
- QGP at high T and/or $\mu_B \rightarrow R_{CP'}$ NCQ scaling of $v_{2'}$...
- First order phase transition? \rightarrow HBT, v₁ analyses
- Critical point?
- \rightarrow Fluctuation analyses (net-protons)
- Chiral symmetry restoration?
 → Di-leptons
- Quarkyonic matter? \rightarrow ???

Rept.Prog.Phys. 74 (2011)

Courtesy of K. Fukushima & T. Hatsuda Baryon Chemical Potential $\mu_{\rm B}$

? QCD critical point
? QCD phase transition
? Quarkyionic matter
? QGP phase

The Beam Energy Scan Programs

RHIC (Collider)

$\sqrt{s_{_{ m NN}}}$ (GeV)	*MB Events in 10 ⁶			
7.7	4.3			
11.5	11.7			
14.5	24**			
19.6	35.8			
27	70.4			
39	130.4			
62.4	67.3			

*Au+Au minimum bias events at STAR usable for analysis

- Two dimensional scan in energy and system size
 → Criticality
- p+p and p+Pb reference runs

Anar Rustamov \rightarrow yesterday

October 2014

Phase Space Trajectories

- Coexistence region not reached at energies
 5 GeV/A
- Optimal test of phase transition region at SIS100 energies!

October 2014

Present Experiments

- 7.7 < $\sqrt{s_{NN}}$ < 200 GeV
- Excellent PID

.....

BERKELEY LAE

- Full azimuthal coverage
- Energy scan started: 2010
- 7.7 < $\sqrt{s_{NN}}$ < 200 GeV
- High granularity calorimeter
- Energy scan started: 2010
- √s_{NN} = 5-17 GeV Full forward ToF
- Energy scan started: 2009

Relatively low statistics at lowest energies (~ few million events) \rightarrow Focus mainly on bulk observables

 \rightarrow For rare probes and lower energies CBM/HADES/NA60+/MPD is needed!

October 2014

Freeze-Out Systematics

Where are we in the phase diagram?

- Saturation of T_{chem} above ~10 GeV
- Splitting between $\rm T_{chem}$ and $\rm T_{kin}$ starts at ~6 GeV

• Connected to a phase change?

 Maximum baryon density reached at ~8 GeV
 → pions processes become more important

Lattice chemical freeze-out parameters: S. Mukherjee. arXiv:1211.7048 [nucl-th] A. Bazavov et al., Phys. Rev. Lett. 109,192302 (2012) S. Borsanyi et al., Phys. Rev. Lett. 111, 062005 (2013)

October 2014

Energy Dependence of Particle Ratios

- Pronounced structures in particle ratios at ~ 5-10 GeV
 → indications for a phase transition?
- Net-baryon density has a maximum at ~ $\sqrt{s_{_{NN}}}$ ~ 8 GeV at freeze-out (Λ/π)
- + Associate production channels like N+N \rightarrow N + Λ + K⁺
- Canonical strangeness suppression at low energies?
- Statistical hadronization model can describe the various structures,
 - **EXCEPT** multi=strange particles
- $\rightarrow \Xi$
- \rightarrow What about Ω?

HADES, QM 2014

Hwa & Yang, Phys. Rev. C 75, 054904 (2007)

October 2014

Collective Behavior

Hydrodynamic evolution

- \cdot v₂ is strength of correlation with event plane
- Baryon-meson splitting
 - \rightarrow signature for partonic degrees of freedom?
- This signature should go away in a hadronic environment
 - \rightarrow SIS 100 energies
 - \rightarrow QGP at < 8 GeV?

October 2014

v₂ NCQ Scaling of Particles

 NCQ-scaling holds for particles and anti-particles separately at all energies
 → Partonic degrees of freedom?

NCQ = Number of Constituent Quark

- High m_T-m₀ not measured at lower energies
- Do φ-mesons or multi-strange particles deviate?
- NCQ scaling should break down at even lower energies (2-5 GeV)!

October 2014

Energy Dependence of Elliptic Flow (v_2)

111111

BERKELEY LAB

What is going on with Flow?

- Anti-particle v_2 at low energies (SIS100/300 regime) seems to be very similar to v_2 at LHC energies ($\sqrt{s_{NN}} = 2760 \text{ GeV}$)!
- More detailed studies at energies below $\sqrt{s_{NN}} = 11.5$ GeV are needed

Δv_2 vs. $\sqrt{s_{NN}}$: Comparison with Theory

• Hydro model: Hybrid model (UrQMD + hydro) with baryon stopping

• Nambu-Jona-Lasinio (NJL): Using vector mean-field potential, repulsive for quarks, attractive for anti-quarks

• NCQ scaling for particles/anti-particles broken → Indication for a phase transition?

- Good agreement of hybrid-hydro model with data
- \rightarrow Mainly baryon stopping?
- What happens at even lower energies?

October 2014

.....

BERKELEY LAB

Radial Expansion Velocity

- Radial expansion velocity extracted from blast wave fits to v₂ data
- Different behavior for particles and anti-particles at lower energies
- Similarities to proton/anti-proton/net-proton curves
 - → Baryon stopping? Annihilation of anti-protons?

BERKELEY LAB

Directed Flow (v_1)

The hunt for the first order phase transition

Higher Moments of Net-Protons

The hunt for the QCD critical point

- Net-protons as proxy for net-baryons (conserved quantity)
- Non-monothonic behavior \rightarrow hint for CP
- Hints of a structure around 19.6 GeV
- UrQMD model shows similar trends as data and similar magnitude at 0-5%
- More statistics and better control of systematic is needed to make a conclusion
- Additional energies needed \rightarrow 14.5 GeV already taken by STAR/PHENIX

Rare Probes: Higher order Moments

- Higher order moments more sensitive to tails
- \rightarrow Better observable for critical point measurement
- \rightarrow Much more statistics needed

Autocorrelations: →Centrality detector needed independent in acceptance from main detector!

```
Baryon stopping:
→Fluctuations might bias critical point
measurement
```


Y

Graphics: Volker Koch

Δ

р

Rare Probes: Di-Electron Spectra

Good probes of created matter → No strong interaction!

- Fair agreement of di-lepton data and cocktail over the whole mass range for all energies
- •The scenario of a broadened rho spectral function can consistently describe the LMR excess yield from $\sqrt{s_{NN}}$ =19.6 up to 200 GeV
- Charm cross sections not known at lower energies
- Lower energies needed (total baryon density is larger)
- Chiral symmetry restoration?
- What about QGP radiation?
 - → We need <u>MUCH</u> more statistics at the lowest energies!

R. Rapp, private communication, R. Rapp Adv. Nucl. Phys. 25,1 (2000)

Ralf Rapp → yesterday Xangbu Xu → next talk

Rare Probes: High $p_T R_{CP}$

RCP: "Normalized p_T spectra ratio Central to Peripheral"

- Radial flow is changing a lot over the BES energy range
- Hijing calculation with Cronin effect but without partonic energy loss shows similar trends
- \bullet High $p_{\rm T}$ particles not measured at lower energies

October 2014

.....

BERKELEY LAE

RHIC BES Phase II White Papers

STAR

PHENIX

BES II workshop: http://besii2014.lbl.gov/Program/bes-ii-talk-files

Luminosity Improvements for BES II

- Electron cooling + longer beam bunches for BES II
- \rightarrow Factor 4-15 improvement in luminosity compared to BES I
- Every energy available with electron cooling!

October 2014

Requested Statistics for BES II

Table 5. Beam Energy Scan Phase-II pro	oposal for .	22 weeks o	of RHIC ru	nning in ea	ach of the years	
2018 and 2019.						
Collision Energy (GeV)	7.7	9.1	11.5	14.5	19.6	
μ_B (MeV) in 0-5% Central Collisions	420	370	315	260	205	
BES-I (Million Events)	4		12	20	36	
BES-I Event Rate (Million Events/Day)	0.25	0.6	1.7	2.4	4.5	
BES-I Int. Luminosity $(1 \times 10^{25}/\text{cm}^2 \text{ s})$	0.13	0.5	1.5	2.1	4.0	
e-Cooling Luminosity Improvement Factor	4	4	4	8	15(4)	
BES Phase-II (Million Events)	100	160	230	300	400	
Required Beam Time (Weeks)	14	9.5	5.0	2.5	4.0+	

*From STAR BES II white paper

• Factor 25 more statistics (10⁸ events) at $\sqrt{s_{NN}}$ = 7.7 GeV (~ SIS300 energy)

Fixed Target Program for BES II

- Fixed target program extends STAR's physics reach to region of compressed baryonic matter
- Simultaneous run with collider mode (ions from the halo) **but** much lower luminosity compared to CBM!

Detector Developments for BES II

inner TPC upgrade

Event Plane Detector

• New forward trigger + Event Plane Detector

- Very important for flow and fluctuation analyses
- \rightarrow independent from main detector
- \rightarrow reduces systematics (non-flow, centrality)!
- **iTPC** upgrade
- \rightarrow increases TPC acceptance to ~1.7 in η
- \rightarrow improves dE/dx resolution

Future Experiments at High Baryon Densities

HADES@FAIR

- Fixed target experiment • SIS18/SIŠ100
- $\rightarrow \sqrt{s_{NN}} = 2-3 \text{ GeV}$
- Di-leptons + multi-strange hadrons
- EMCAL upgrade for π^0 and η
- But: limited by occupancy, data rate and acceptance at higher energies $\rightarrow CBM$

CBM@FAIR

• Fixed target experiment

- SIS100/SIS300
- $\rightarrow \sqrt{s_{NN}} = 2-8 \text{ GeV}$ Differential measurements of rare probes $(\Xi, J/\psi, D^0)$, di-leptons,...)
- Phase transition to quarkyonic and partonic matter
- Charm production,
- hypernuclei,...

MPD@NICA

- Collider experiment
- $\sqrt{s_{NN}} = 4-11 \text{ GeV}$
- Study of in-medium properties of hadrons
- Nuclear EoS
- Phase transition, critical point search

October 2014

The Future of Low Energy Runs

- Is there a first order phase transition and where is it?
- → R_{CP} not measured at high p_T for low energies! → v_1 measurement for different centralities, EPD detector to control systematics

- Where is the critical point and can we find it? → Error bars (stat. + syst.) too large!
 - \rightarrow Energy steps too wide!
 - \rightarrow More energies/systems (SPS)

- Study of QGP radiation and chiral symmetry restoration for different μ_B
- \rightarrow Multi-differential di-lepton spectroscopy at large M_{ee}

October 2014

Thanks!

Di-Electron Spectra: Low Mass Region

R. Rapp, private communication, R. Rapp Adv. Nucl. Phys. 25,1 (2000)

- The scenario of a broadened rho spectral function can consistently describe the LMR excess yield from $\sqrt{s_{NN}}$ =19.6 up to 200 GeV
- What about the p_T dependence of model/data? (first results shown)
- Systematic errors for model?
- Chiral symmetry restoration?

October 2014

Emission Duration and Expansion/Lifetime

The hunt for the first order phase transition

rrrrr

BERKELEY LAB