

Frontend Electronics for high-precision single photo-electron timing

Matteo Cardinali
on behalf of the PANDA Cherenkov Group

FAIR 2014, Worms 16/10/2014

Helmholtz-Institut Mainz

(Detection of Internally Reflected Cherenkov light)

Keypoints: •

- imaging & time of propagation
- compact & low power consumption
- high count rate per channel

1) Large number of channels (15.000 ch)

2) Fast (50-100 kHz/ch, interaction rate up to 50 MHz)

3) High Resolution (σ_{Single Photo-Electron}<100 ps)

Micro-Channel Plate PMTs (MCP)

- Photonis XP85012 (64 ch);
- typical gain 6×10^5 ;
- rise time 0.6 ns;
- timing resolution ~40 ps (SPE).

❖ TDC Readout Board v3 (TRB3)

- developed in GSI;
- 4 FPGAs programmed as TDC (64 ch each);
- 10 ps RMS time precision;
- 700 kHz max data readout trigger rate;
- o 67 MHz max hit rate;
- LVDS input.

Micro-Channel Plate PMTs (MCP)

- Photonis XP85012 (64 ch);
- typical gain 6 x 10⁵;
- o rise time 0.6 ns;
- timing resolution ~40 ps (SPE).

- developed in GSI;
- 4 FPGAs programmed as TDC (64 ch each);
- 10 ps RMS time precision;
- 700 kHz max data readout trigger rate;
- o 67 MHz max hit rate;
- LVDS input.

NINO card:

- → modular design;

 - discriminator card with NINO ASIC (from ALICE);
- ↑ 160 mW/ch;
- Time over Threshold.

PADIWA card:

- pre-amplifiers
 (x10, up to ~2.2 GHz);
- FPGA discriminator (reprogrammable);
- ♦ 80 mW/ch;
- → Time over Threshold.

- Realistic condition (~0.3 γ/event);
- threshold behaviour;
- > time walk correction.

correction:
$$t_{corr} = t_{meas} - m \cdot (\text{ToT}) + q$$

- Realistic condition (~0.3 γ/event);
- threshold behaviour;
- > time walk correction.

correction:
$$t_{corr} = t_{meas} - m \cdot (\text{ToT}) + q$$

Test Experiment

- - NINO & PADIWA;
 - up to 6 MCPs;
 - > 384 readout channels;
 - 2-3 detected photons per event.

- Clear Cherenkov pattern (expecially for NINO FEE);
- > Padiwa issue (now solved).

- Studies performed for NINO cards;
- charge sharing between neighbouring pixels (single photo-electron);

time walk correction validated;

timing resolution (NINO card + TRB3) ~ 40 ps.

optimised walk correction;

$$\sigma_{total} = \frac{\sigma_{fit}}{\sqrt{2}} \approx 100 \text{ ps}$$

optimised walk correction;

$$\sigma_{total} = \frac{\sigma_{fit}}{\sqrt{2}} \approx 100 \text{ ps}$$

Simulation of propagation time;

$$\sigma_{prop} \sim \sqrt{\sigma_{total}^2 - (40 \text{ ps})_{FEE}^2 - (40 \text{ ps})_{MCP}^2}$$

$$\sigma_{prop} \sim 82 \text{ ps}$$

> around $\sqrt{82^2-63^2}\approx 50 \mathrm{ps}$ from the sync. time of TRBs.

Global performances – gain studies

- \gt 1 x 10⁶ has been used for the test experiment;
- can we use a smaller gain?

	Timing Resolution	
Gain	not corrected	corrected
1 x 10 ⁵	~190 ps	~180 ps
5 x 10 ⁵	~175 ps	~130 ps
1 x 10 ⁶	~161 ps	~40 ps

- Clear correlation between gain and time over threshold;
- the corrected timing resolution gets significantly worse (walk correction needs to be adapted).

Global performances – stability

Timing performances stable over extended period;

- less than 1 in a million events lost by TRB;
- 1.000001
 1.000005
 0.9999995
 0.9999995
 0.9999985
 0.9999985
 TRB error condition
- lost hits in less than 1% of the events;

Wishes Fulfilled

✓ TRB3 provides a stable DAQ system and high precision TDC;

✓ time-over-threshold is sufficient for walk correction;

✓ excellent timing (σ_t <100 ps);

✓ both FEE cards meet PANDA requirements.

- Test experiment at GSI of novel designs for DIRC (summer 2014);
 - PADIWA readout
 - large TRB3 readout
 - analysis ongoing
- Systematic gain studies;

- Fast start counter development
 - systematic studies of sync. time