

CBM – program and status

Outline:

QCD – matter Phase diagram and Freeze-out data Equation – Of – State In-medium modifications of hadrons Dense matter observables at 'low energies' Experimental strategy of CBM Status of CBM Conclusion

First Documented Observation of Strongly Interacting Matter

Rubbing of Suzhou star map (1054) Ν W guest star K. Brecher et al., S Obs. 103, 106 (1983)

Crab-Nebula (Supernova 1054)

Distance: 6.500 la Diameter: 11 la Mass: ~ 5 M_☉

Density in filaments: 1300 particles/cm³

Temperature 15.000 K \leftrightarrow 1.3 eV

Hubble space telescope

Pulsars

Pulsars are rotating neutron stars.

- rotation frequency f = 0.25 1000 Hz
- magnetic field $B = 5 \cdot 10^{12}$ Gauss

The rotating neutron star with a strong magnetic field emits synchrotron radiation from high energy electrons !

- focused radiation (X-ray radio)
- lighthouse behaviour

Example: Crab pulsar

Discovery Rotation period Slowing down rate Mass Radius Density 1968 T = 33.4 ms $\Delta T/\Delta t = 3 \cdot 10^{-8} \text{ s/a}$ ~ 1.5 M_o ~ 15 km 3 - 10 ρ_0

International Conference on Science and Technology for FAIR in Europe 2014, Worms, 13.10.2014

N.Herrmann, PI, Uni-HD 4

Neutron star masses

Compilation by Lattimer and Prakash

M. Prakash, <u>arXiv:1307.0397</u>

Mass – Radius Relation of Neutron Stars

P.B. Demorest (2010) doi:10.1038/nature09466

Curves given by different Equation – of – States (EOS): $P = P(\rho, T)$ (matter in β – equilibrium)

- nucleons
- nucleons + exotic matter
- strange matter

₀ M/M

Equation – of – State of Neutron Stars

Equation-of-state: Non-local SU(3) NJL with vector coupling

M. Orsaria, H. Rodrigues, F. Weber, Phys.Rev. D87 (2013) 023001

Heavy – Ion Collisions

small systems

high temperatures

History of QCD – matter research

Bevalac @ LBNL, Berkeley	1980 - 1990	√s _{NN} = 1.15 GeV	E/A = 2.4 GeV
AGS @ BNL, Upton	1985 - 1995	√s _{NN} = 4.8 GeV	E/A = 10.5 GeV
SPS @ CERN, Geneva	1987 – 2004 2011 –	√s _{NN} = 17.3 GeV	E/A = 157 GeV
SIS-18 @ GSI, Darmstadt	1989 —	√s _{NN} = 1.5 GeV	E/A = 2.5 GeV
RHIC @ BNL, Upton	2000 –	√s _{NN} =12-200 GeV	E/A = 6-100 GeV
LHC @ CERN, Geneva	2010 –	√s _{NN} = 15400 GeV √s _{NN} = 2760 GeV	E/A = 7700 GeV E/A = 1380 GeV
SIS-100@ FAIR, SIS-300@FAIR, Darmstadt	~ 2019 –	√s _{NN} = 1.9-4.5 GeV √s _{NN} = 4.2-9 GeV	E/A = 2-11 GeV E/A = 10-45 GeV
NICA@JINR, Dubna	~ 2018 –	√s _{NN} = 1.9-3.2 GeV	E/A = 2-6 GeV

Expectation of baryon density

HSD transport model (W.Cassing, E. Bratkovskaya) calculations for central Au + Au collisions

Final state particle abundance

Particle yield ratios from central Au + Au collisions

Knowledge about strange baryons and antibaryons in FAIR energy range is rather limited.

Note:

Direct multi-strange hyperon production:

 $pp \rightarrow \Xi^{-}K^{+}K^{+}p$ (E_{thr} = 3.7 GeV) $pp \rightarrow \Omega^{-}K^{+}K^{+}K^{0}p$ (E_{thr} = 7.0 GeV)

Chemical Freeze-out data

P. Gasik (FOPI,~2011)

Assumption: thermodynamic equilibrium

Errors include systematic errors (when given).

Data sources: A. Andronic, P. Braun-Munzinger, J. Stachel, Nucl. Phys. A772 (2006) 167

J. Cleymans, H. Oeschler, K. Redlich, S. Wheaton, Phys. Rev. C73 (2006) 034905

G. Agakishiev et al. (HADES), Eur. Phys.J. A47 (2011) 21

At lower energies canonical ensemble has to be used.

Equilibrium as signature for phase transition?

HADES: Sub-threshold Ξ⁻ - production

Ar+KCI reactions at 1.76A GeV

- Ξ^{-} yield by appr. factor 25 higher than thermal yield
- strangeness exchange reactions like

Reminder: Subthreshold Kaon – measurements (KAOS)

Excitation function of flow variables

•No consistent model description available so far.

•Largest sensitivity to model parameters (EOS) in energy range 2 – 5 AGeV.

•Uncertainty in data at 1 GeV/A corresponds to uncertainty in K of 150 MeV.

Flow of charged kaons

K⁺ sideflow indicative for repulsive potential. K⁻ sideflow indicative for attractive potential. Transport model calculations need to be refined.

AGS: K⁰ – flow

Data: P. Chung et al, (E895), PRL85, 940 (2000)

Theo: S. Pal et al., Phys.Rev.C62:061903, (2000)

Fluctuations and critical point

Event-by-event fluctuations of conserved quantities like strangeness, baryons, and net-charge are related to susceptibilities χ and correlation length ξ .

$$\begin{split} \delta N &= N - \left\langle N \right\rangle \\ \left\langle \left(\delta N \right)^2 \right\rangle &\approx \xi^2, \left\langle \left(\delta N \right)^3 \right\rangle &\approx \xi^{4.5}, \left\langle \left(\delta N \right)^4 \right\rangle &\approx \xi^7 \\ S\sigma &\approx \frac{\chi_B^3}{\chi_B^2}, \qquad \kappa \sigma^2 \approx \frac{\chi_B^4}{\chi_B^2} \end{split}$$

Sensitive to tails of multiplicity distributions (centrality selection, detector biases, ...)

References:

- STAR: PRL105, 22303(10); ibid, 032302(14)
- M. Stephanov: PRL102, 032301(09) // R.V. Gavai and S. Gupta,
- PLB696, 459(11) // F. Karsch et al, PLB695, 136(11) // S.Ejiri et al, PLB633, 275(06)
- A. Bazavov et al., PRL109, 192302(12) // S. Borsanyi et al., PRL111, 062005(13) //
- V. Skokov et al., PRC88, 034901(13)

Fluctuations in BES (STAR)

L. Adamczyk et al. (STAR Collaboration), Phys. Rev. Lett. 112, 032302 (2014)

Net-proton results:

- 1) All data show deviations below Poisson for $\kappa\sigma^2$ at all energies. Larger deviation at $\sqrt{s_{NN}}$ ~20GeV
- 2) UrQMD model shows monotonic behavior in the moment products *STAR: PRL112, 32302(14)/arXiv: 1309.5681*

Net-charge results:

- 1) No non-monotonic behavior
- 2) More affected by the resonance decays

STAR: arXiv: 1402.1558 P. Garg et al, PLB726, 691(13)

'Low' energy data limited by statistics.

In – medium properties of light vector mesons

Phase transition observables (?)

R. Arnaldi et al. (NA60), PRL 100 (2008) 022302

NA60

In + In collisions at 158 AGeV (SPS)

Clean measurement of ρ – meson spectral function.

Slope parameter of transverse momentum spectra in agreement with hadrons up to M ~ 1 GeV

Spectra above 1 GeV are conjectured to originate from partonic source

Charm physics program

Physics case

- Charm production at threshold energies
- Charm propagation in (dense) nuclear matter
- Charmonium suppression in partonic matter

A. Frawley, T. Ulrich, R. Vogt, Phys.Rept.462:125-175,2008

Experiments on dense baryonic matter

Experiment	Energy range	Reaction rates
	(Au/Pb beams)	Hz
STAR@RHIC	$\sqrt{s_{NN}} = 7 - 200 \text{ GeV}$	1 – 800
BNL		(limitation by luminosity)
NA61@SPS	E _{kin} = 20 – 160 A GeV	80
CERN	$\sqrt{s_{NN}} = 6.4 - 17.4 \text{ GeV}$	(limitation by detector)
MPD@NICA	√s _{NN} = 4.0 − 11.0 GeV	~1000
Dubna		(design luminosity of 10 ²⁷ cm ⁻² s ⁻¹ for heavy ions)
HADES@SIS100	1.5 A GeV Au+Au	5 · 10 ⁴
	8 A GeV Ni+Ni	
CBM@FAIR	$E_{kin} = 2.0 - 45 AGeV$	10 ⁵ – 10 ⁷
Darmstadt	$\sqrt{s_{NN}} = 2.7 - 8.3 \text{ GeV}$	(limitation by detector)

Relicts of high density phase(?)

Kaonic molecules

T.Yamazaki and Y. Akaishi, Y. Akaishi, T.Yamazaki, T.Yamazaki and Y. Akaishi, Phys. Rev. C76 (2007) 045201Phys.Rev.C65, 044005 (2002) Phys.Lett.B535, 70 (2002) Phys.Lett.B535, 70 (2002)

Hypernuclei

) T/

 FINUDA
 M=2255±9 MeV, Γ=64±14 MeV

 DISTO
 M=2265±2 MeV, Γ=118±8 MeV

Heavier clusters, e.g.: $(ppnK^{-}) \rightarrow \Lambda + d$

International Conference on Science and Technology for FAIR in Europe 2014, Worms, 13.10.2014

Decay by weak interaction

Production in HI – collisions? Recently: STAR, ALICE

Double strange hypernuclei??

Hypertriton production in Ni+Ni at 2 AGeV

Baryon – Strangeness – Correlation

	Region A1	Region A2
_∧ t/ ³ He	0.029 +/- 0.002	<0.003 +/- 0.002
Λ/р	0.0020 +/- 0.0005	0.0028 +/- 0.0005
$_{\Lambda}$ t/ ³ He / Λ /p	10 +/- 3	< 0.95 +/- 0.6

Strange baryonic bound states

- Single and double strange hypernuclei in heavy ion collisions at SIS100
- Strange matter in the form of strange dibaryons and heavy multi-strange shortlived objects.

Λd – correlations

Ni+Ni at 1.91 AGeV (S325e data (2008))

FOPI 2003 and 2008 data are consistent, Inconsistent with cusp ($\Sigma - d$ – threshold) and FINUDA. (FOPI, work in progress)

Current scenario:

Data taking: 2 weeks, DAQ rate: 1kHz Event sample: ~ 100 M events, Statistical significance: ~ 5, Production probability: P ~ 10⁻⁴

Significance does not include LEE – Look elsewhere effect (?)

Needed :

Sensitivity at level P ~ 10⁻⁶ Significant increase of DAQ rate

CBM collaboration

China:

Tsinghua Univ., Beijing **CCNU Wuhan USTC Hefei**

Croatia:

University of Split

Czech Republic:

CAS, Rez Techn. Univ. Prague

France:

IPHC Strasbourg

Hungaria:

Wigner IPNP, Budapest Eötvös Univ. Budapest

Germany:

TU Darmstadt Univ. Gießen Univ. Heidelberg, Phys. Inst. Univ. Heidelberg, ZITI Univ. Frankfurt **FIAS Frankfurt** Univ. Münster FZ Rossendorf **GSI** Darmstadt FAIR Darmstadt Univ. Tübingen Univ. Wuppertal

India:

Aligarh Muslim Univ., Aligarh **IOP Bhubaneswar** Panjab Univ., Chandigarh Gauhati Univ., Guwahati Univ. Rajasthan, Jaipur Univ. Jammu, Jammu IIT Kharagpur SAHA Kolkata Univ Calcutta, Kolkata **VECC Kolkata** Univ. Kashmir, Srinagar Banaras Hindu Univ., Varanasi Inst. of Tech., Indore, India

56 institutions, > 400 members

International Conference on Science and Technology for FAIR in Europe 2014, Worms, 13.10.2014

Korea:

Pusan National Univ.

Poland:

Krakow Univ. Warsaw Univ. Warsaw Univ. of Tech. Silesia Univ. Katowice Nucl. Phys. Inst. Krakow

Romania:

NIPNE Bucharest Bucharest University

Russia:

IHEP Protvino INR Moscow **ITEP Moscow KRI, St. Petersburg** Kurchatov Inst. Moscow **VBLHEP, JINR Dubna** LIT, JINR Dubna **MEPHI Moscow Obninsk State Univ. PNPI** Gatchina SINP, Moscow State Univ. St. Petersburg Polytec. U.

Ukraine:

KINR, Kiev Shevchenko Univ., Kiev

CBM - strategy

Systematic measurement of excitation function of <u>rare</u> probes with full event characterisation

- Multiple strange hadrons
- Low mass vector mesons via dileptons
- Open charm
- Charmonia

with min. bias event Inspection rate of

10 MHz (!)

by realizing free streaming DAQ concept.

charm

 Φ, Ξ, Ω

Κ, π, Λ, η

CBM – **Detector Concept**

Different detector setups for muon & electron measurements:

1) Muon – setup

0) Core elements

dipole magnet

- STS silicon tracking system
- **PSD** projectile spectator detector
- **TOF MRPC time-of-flight detector**
- DAQ data acquisition
- FLES first level event selection

1) Muon setup

MUCH – Muon detection system (active absorber) TRD – tracking station

2) Electron/Hadron setup

MVD – Micro vertex detector TRD – Transistion radidation detector ECAL – Electromagnetic calorimeter

All core components designed with self triggered FEE and free running DAQ for 10 MHz interaction rate.

CBM Technical Developments

SC Magnet: JINR Dubna Micro-Vertex Detector:

Frankfurt, Strasbourg

MRPC ToF Wall: Beijing, Bucharest, RICH Detector: Darmstadt, Frankfurt, Hefei, Heidelberg, Moscow, Rossendorf,

Darmstadt, Giessen, Pusan, St. Petersburg, Wuppertal

Transition Radiation Detector: Bucharest, Dubna, Frankfurt, Heidelberg, Münster

nce and Technology for FAIR in Eulope 2014 Wo International (

Forward calorimeter: Moscow, Prague, Rez

Silicon Tracking System: Darmstadt, Dubna, Krakow, Kiev, Kharkov, Moscow, St. Petersburg, Tübingen

Muon detector: Kolkata + 13 Indian Inst., Gatchina, Dubna

DAQ and online event selection: Darmstadt, Frankfurt, Heidelberg, Kharagpur, Warsaw

CBM Technical Design Reports

CBM Silicon Tracking System (STS)

<u>Silicon sensors:</u> double-sided micro-strips, 1024 strips on each side, 58 µm pitch, stereo angle 0°, 7.5° width 60 mm, height 20, 40, 60 mm

Micro cables from sensors to FEBs

Light weight carbon fibre ladders

ASIC: free streaming, hits with time stamp FEB cooling: CO₂

International Conference on Science and Technology for FAIR in Europe 2014, Worms, 13.10.2014

8 STS stations, distance from target 30–100 cm 2.133 M channels

34

Free streaming data read-out & online event selection Self-triggered Detectors Det. Det. Det. Det. front-end Front-end All hits shipped to FLES FEE FEE FEE FEE Buffers Buf. Buf. Buf. Buf. ... 1 TByte/s Total Readout Buffers/ Read-Read-Input Data Rate Data Combiners out Buf. out Buf. ~1000 Input Nodes • Fast PCIe interfaces DAQ/ DAO/ FLES IF FLES IF ... **High-throughput** Input Input event building ... Node Node • InfiniBand QDR ഗ Network First-level _ Proc. Proc. Event ш **Event selection in** ... Node Node Selector FLES processor farm • High-throughput online analysis • 10⁷ Events/s Permanent Storace

 Vectorization and many-core architectures

• ~ 60.000 Cores

All CBM – event selection is done in software.

Storage

Challenges: Sufficient bandwidth and compute power for operation at 10 MHz, Robust detector technologies, Stable operation, Online calibration and alignment.

35

FLES Reconstruction Software

GSI "Minicube" with 10.000 cores

Given n threads each filled with 1000 events, run them on specified n cores, thread/core.

Full online track reconstruction, event reconstruction, particle analysis, event selection, and storage.

The FLES package is vectorized, parallelized, portable and scalable.

Hyperon reconstruction: Au + Au at 8 AGeV 10⁶ central events

The high rate case at SIS100

Example:

 Ξ^+ - flow measurement with $\varepsilon = 5 / 10^6$ central events

Requirement for high precision measurement: $N(\Xi^+) = 10^5$ / event sample

Rate of Ξ^+ - detection in CBM acceptance:

$$R(\Xi^+) = R_{ev} \cdot f_{ev} \cdot \epsilon = 10^5 \cdot 0.1 \cdot 5.10^{-6} \, s^{-1} = 5.10^{-2} \, s^{-1}$$

Time for CBM running without selection (R_{ev}=100 kHz):

 $\Delta T = N / R(\Xi^+) = 2.10^6 s = 555 h = 23 d$ (no systematic studies possible)

Time for CBM running with FLES (10MHz):

$$R_{ev} = 10^7 s^{-1}$$

$$\Delta T = N / R(\Xi^+) = 2.10^4 s = 5.55 h$$
 (systematic studies possible !)

Generic anti-particle selection: \overline{p} - candidates

Run time in 10 MHz mode:

Run time in 100 kHz mode:

Central Au+Au at 10 AGeV from UrQMD current global track – TofHit matching performance

total efficiency:	$\varepsilon = 0.36$		
contamination:	$\kappa = 4$.		
Event selection rate:	$R = R_{ev} \cdot f_{cev}$	$_{n} \cdot \mathbf{P}_{probe} \cdot \mathcal{E} \cdot (1 + \kappa)$	
@10MHz:	$R=10^{7} \cdot 0.1$	$1 \cdot 7 \cdot 10^{-3} \cdot 0.36 \cdot 5.Hz$	
	=12.6 kH	łz	
$\Delta T(10^5 \overline{p})$	= 40 <i>s</i>	time on target to	archive 100.000 \overline{p} .

Extrapolation to central Au+Au at 4 AGeV:

total efficiency:	$\varepsilon = 0.55$	heekground ee	alad
contamination:	$\kappa = 1000.$	with total multip	olicity
Event selection rate:	$R=R_{ev} \cdot f_{cen} \cdot P_{probe}$	$\mathcal{E} \cdot (1 + \kappa)$	
@10MHz:	$R=10^7 \cdot 0.1 \cdot 1.5 \cdot 10^{-1}$	$^{5} \cdot 0.55 \cdot 1.10^{3} \text{Hz} =$	8.2 kHz
$\Delta T(10^5 \overline{p})$	= 3.5 h		
@100kHz:	$R=10^{5} \cdot 0.1 \cdot 1.5 \cdot 10^{5}$	$5 \cdot 0.55$ Hz = 8 Hz	
$\Delta T(10^5 \overline{p})$	$=350 \ h=14 \ d$		

Load test of full size RPC prototypes at SIS18

THU Beijing, NIPNE Bucharest, GSI Darmstadt, IFI Frankfurt, USTC Hefei, PI Heidelberg, INR Moscow, ITEP Moscow, HZDR Rossendorf, CCNU Wuhan.

Oct. 2012

Kr + Pb (2% target) @ 1.2 AGeV in Cave B

Flux with beam rates of 5 · 10⁵ / spill – (~) 5 · 10⁷ / spill: 200 Hz/cm² – 100 kHz/cm²

Availability of heavy – ion test beams in 2015 - 2017 ?

e⁺e⁻ - invariant mass spectra in central Au+Au

	ρ	Ø	φ		ρ	ω	φ
eff.	3.12	4.11	4.89	eff.	4.39	5.53	7.08
S/BG	-	0.64	0.04	S/BG	-	0.31	0.11

Muon Detection System

The Muon Detection System at SIS100/300

Start versio

10 A GeV Au+Au \rightarrow J/ ψ Iron absorber: 20+70+135 cm 3 detector triplets: GEM + straw tubes + TRD

Full version

35 A GeV Au+Au
Iron absorber:
2x20+3x30cm
6 detector triplets:
3 GEM+2 straw tubes
+TRD

N.Herrmann, PI, Uni-HD

Summary / Conclusion

- Phase structure of QCD will not be revealed by a single measurement.
- QCD matter physics needs a facility for systematic studies. and a 3. generation experiment -> CBM rate capability: 10 MHz interaction rate
- CBM physics program

many open physics questions

EOS in-medium modifications of hadrons phase transition to quarkyonic matter (?)

substantial discovery potential at SIS100 / 300

CBM strategy

systematic measurement of multi-dimensional observables of (rare) probes use detector components as tool kit.

• CBM status

well advanced with respect to overall FAIR timeline.

Thanks for your attention!

CBM time line

CBM time line

Schedule

	~	/organgsname			Anfang	Ende	2009 2010	2011 2012 2013	2014 2015	2016 2017 2018	3 2019		
1	0							H1 H2 H1 H2	H1 H2 H1 H2 H1 H2	H1 H2 H1 H2	H1 H2 H1 H2 H1	H2 H1	
2		FAIR Civil Construction					Fr 06.11.0	9 Mi 09.05.18			: :		
3		Planning Tendering Construction of Site and Buildings					Er 06.11.0	9 Mi 09.05.18			<u></u>		
4		Ready to move in HEBT Connection SIS18- SIS100							i			▲: 29.0	
5		Ready to move in HEBT SIS100						1 201-	7	▲ 29.0			
6		Read	y to move in SIS1	00	L	BIVI Ca	ave re	eady:	iviay	1,201		♦ 29.0	
7		_ /					MO UT.US.T	/ Mo U1.U5.17			:	01.05.	
8	- (] H	ЗN	l tim	e lin	C IS)		Mo 01.05.1	7 Mo 01.05.17			: :	♦ 01.05.	
9							Fr 28.10.1	6 Fr 28.10.16				4 28.10.	
10	200	10	2011	2012	2012	2014	2015	2017	2017	2010	2010	2020	
11	20		2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	
12										_			
13	- R&	D de	etectors	&	constru	uction de	etectors	ectors &		installation.		first data	
14		al a.											
15		<mark>0-01</mark>	JI Syste	ms	read-o	ut syste	ms –	s commissioning taking					
17			ccelerator for	Set IIn Phase			Mo 01.06.0	9 Fr 28.09.18			······	······	
		FAIR Accelerator for Set-Up Phase						1 💌 1 1 1				- - - - -	
18		Mor	dule 0 - 3				Mo 01.06.0	9 Mo 01.06.09	🔷 01.06.		: :		
18 19		Mod Syst	dule 0 - 3 tems Block 1 of	Mod 0-3			Mo 01.06.0	9 Mo 01.06.09 9 Do 22.02.18	♦ 01.06.				
18 19 20		Moi Syst	dule 0 - 3 tems Block 1 of HEBT Connectio	Mod 0-3 m SIS18 - SIS100 ((T151, T152, T153	, T1S4)	Mo 01.06.0	9 Mo 01.06.09 9 Do 22.02.18	♦ 01.06.		: :		
18 19 20 103		Mor Syst	dule 0 - 3 tems Block 1 of HEBT Connectio Super FRS	Mod 0-3 n SIS18 - SIS100 ((T1S1, T1S2, T1S3	, T1S4)	Mo 01.06.0 Mo 01.06.0	9 Mo 01.06.09 9 Do 22.02.18	read	v· Oct 1	<u> </u>	017 -	
18 19 20 103 188		Mon Syst	dule 0 - 3 tems Block 1 of HEBT Connectio Super FRS tems Block 2 of	Mod 0-3 m SIS18 - SIS100 (Mod 0 - 3	(T1S1, T1S2, T1S3	, T1S4)	Mo 01.06.0 Mo 01.06.0	9 Mo 01.06.09 9 Do 22.02.18 5100	ready	y: Oct. 1	13, 20	017	•
18 19 20 103 188 189		Mor Syst	dule 0 - 3 terns Block 1 of HEBT Connectio Super FRS terns Block 2 of HEBT-SIS100 (T8	Mod 0-3 n SIS18 - SIS100 (Mod 0 - 3 :DV)	(T1S1, T1S2, T1S3	, T1S4)	Mo 01.06.0 Mo 01.06.0 SIS Mo 01.06.0	9 Mo 01.06.09 9 Do 22.02.18 5 100 9 Mi 01.03.17	ready	y: Oct. 1	13, 20	017	•
18 19 20 103 188 189 271		Mor Syst	dule 0 - 3 tems Block 1 of HEBT Connectio Super FRS tems Block 2 of HEBT-SIS100 (T8 SIS100	Mod 0-3 in SIS18 - SIS100 (Mod 0 - 3 iDU)	(T1S1, T1S2, T1S3	, T1S4)	Mo 01.06.0 Mo 01.06.0 SIS Mo 01.06.0 Mo 01.06.0	9 Mo 01.06.09 9 Do 22.02.18 5 1 0 0 9 Mi 01.03.17 9 Fr 13.10.17	ready	y: Oct. 1	13, 20	017	•
18 19 20 103 188 189 271 372		Moi Syst	dule 0 - 3 tems Block 1 of HEBT Connectio Super FRS tems Block 2 of HEBT-SIS100 (T8 SIS100 HEBT - T1X1, T14	Mod 0-3 in SIS18 - SIS100 (Mod 0 - 3 :DU) C1,T1D1-T1C2,TN((T1S1, T1S2, T1S3 C1 - T1X2,TXL1,TX	, T1S4) KL2,TXL3,TXL4,TP	Mo 01.06.0 Mo 01.06.0 SIS Mo 01.06.0 Mo 01.06.0 P1,1 Mo 01.06.0	9 Mo 01.06.09 9 Do 22.02.18 5 1 0 0 9 Mi 01.03.17 9 Fr 13.10.17 9 Di 03.04.18	ready	y: Oct. 1	13, 20		•
18 19 20 103 188 189 271 372 453		Mot Syst Syst	dule 0 - 3 tems Block 1 of HEBT Connectio Super FRS tems Block 2 of HEBT-SIS100 (T8 SIS100 HEBT - T1X1, T10 Multifunction Ca	Mod 0-3 m SIS18 - SIS100 (Mod 0 - 3 DU) C1,T1D1-T1C2,TNG aves (CBM HADES Mod 0 - 2	(T1S1, T1S2, T1S3 C1 - T1X2,TXL1,TX 6)	, T1S4) KL2,TXL3,TXL4,TP	Mo 01.06.0 Mo 01.06.0 SIS Mo 01.06.0 Mo 01.06.0 P1,1 Mo 01.06.0 Mo 01.06.0	9 Mo 01.06.09 9 Do 22.02.18 5 1 0 0 9 Mi 01.03.17 9 Fr 13.10.17 9 Di 03.04.18 9 Fr 28.09.18	read	y: Oct. 1	13, 2 (017	P
18 19 20 103 188 189 271 372 453 533		Mot Syst Syst	dule 0 - 3 terns Block 1 of HEBT Connectio Super FRS terns Block 2 of HEBT-SIS100 (18 SIS100 HEBT - T1X1, T10 Multifunction Ca terns Block 3 of HEBT - T141 T14	Mod 0-3 in SIS18 - SIS100 (Mod 0 - 3 iDU) C1,T1D1-T1C2,TN0 aves (CBM HADES Mod 0 - 3 2 TEE4 TSY4 TSE	(T1S1, T1S2, T1S3 C1 - T1X2,TXL1,TX S)	, T1S4) KL2,TXL3,TXL4,TP	Mo 01.06.0 Mo 01.06.0 SIS Mo 01.06.0 Mo 01.06.0 P1,1 Mo 01.06.0 Mo 01.06.0 Mo 01.06.0	9 Mo 01.06.09 9 Do 22.02.18 5 100 9 Mi 01.03.17 9 Fr 13.10.17 9 Di 03.04.18 9 Fr 28.09.18 9 Fr 14.09.18	read	y: Oct. 1	13, 2 (
18 19 20 103 188 189 271 372 453 533 534 614		Mor Syst Syst	dule 0 - 3 tems Block 1 of HEBT Connectio Super FRS tems Block 2 of HEBT-SIS100 (T8 SIS100 HEBT - T1X1, T14 Multifunction Ca tems Block 3 of HEBT - T1F1,T1F HEBT - TAP1, T4	Mod 0-3 in SIS18 - SIS100 (Mod 0 - 3 3DU) C1,T1D1-T1C2,TN aves (CBM HADES Mod 0 - 3 2,TFF1, TSX1, TSF AP2, TCR1, THS1	(T1S1, T1S2, T1S3 C1 - T1X2,TXL1,TX S) :1, FRF, TFC1	, T1S4) KL2,TXL3,TXL4,TPI	Mo 01.06.0 Mo 01.06.0 SIS Mo 01.06.0 Mo 01.06.0 Mo 01.06.0 Mo 01.06.0 Mo 01.06.0 Mo 01.06.0 Mo 01.06.0 Mo 01.06.0	 9 Mo 01.06.09 9 Do 22.02.18 5 1 00 9 Mi 01.03.17 9 Fr 13.10.17 9 Fr 13.10.17 9 Fr 28.09.18 9 Fr 14.09.18 9 Di 29.08.17 9 Do 21.12.17 	read	y: Oct. 1	13, 20		
18 19 20 103 188 189 271 372 453 533 533 534 614 694		Mor Syst Syst	dule 0 - 3 tems Block 1 of HEBT Connectio Super FRS tems Block 2 of HEBT-SIS100 (T8 SIS100 HEBT - T1X1, T14 Multifunction Ca tems Block 3 of HEBT - T1F1,T1F HEBT - TAP1, T4 p-bar Target	Mod 0-3 in SIS18 - SIS100 (Mod 0 - 3 DU) C1,T1D1-T1C2,TN aves (CBM HADES Mod 0 - 3 2,TFF1, TSX1, TSF AP2, TCR1, THS1	(T1S1, T1S2, T1S3 C1 - T1X2,TXL1,TX 3) 1, FRF, TFC1	, T1S4) KL2,TXL3,TXL4,TP	Mo 01.06.0 Mo 01.06.0 SIS Mo 01.06.0 Mo 01.06.0 Mo 01.06.0 Mo 01.06.0 Mo 01.06.0 Mo 01.06.0 Mo 01.06.0 Mo 01.06.0	9 Mo 01.06.09 9 Do 22.02.18 5 1 0 0 9 Mi 01.03.17 9 Fr 13.10.17 9 Di 03.04.18 9 Fr 28.09.18 9 Fr 14.09.18 9 Di 29.08.17 9 Do 21.12.17 9 Mi 17.01.18		y: Oct. 1	13, 20		
18 19 20 103 188 189 271 372 453 533 534 614 694 774		Mor Syst Syst	dule 0 - 3 tems Block 1 of HEBT Connectio Super FRS tems Block 2 of HEBT-SIS100 (T8 SIS100 HEBT - T1X1, T10 Multifunction Ca tems Block 3 of HEBT - T1F1,T1F HEBT - TAP1, T/ p-bar Target p-LINAC	Mod 0-3 in SIS18 - SIS100 (Mod 0 - 3 iDU) C1,T1D1-T1C2,TN(aves (CBM HADES Mod 0 - 3 2,TFF1, TSX1, TSF AP2, TCR1, THS1	(T1S1, T1S2, T1S3 C1 - T1X2,TXL1,TX 6) F1, FRF, TFC1	, T1S4) KL2,TXL3,TXL4,TP	Mo 01.06.0 Mo 01.06.0 SIS Mo 01.06.0 Mo 01.06.0 Mo 01.06.0 Mo 01.06.0 Mo 01.06.0 Mo 01.06.0 Mo 01.06.0 Mo 01.06.0 Mo 01.06.0	9 Mo 01.06.09 9 Do 22.02.18 5 1 00 9 Mi 01.03.17 9 Fr 13.10.17 9 Fr 13.10.17 9 Di 03.04.18 9 Fr 28.09.18 9 Fr 14.09.18 9 Di 29.08.17 9 Do 21.12.17 9 Mi 17.01.18 9 Do 15.02.18		y: Oct. 1	13, 20		
18 19 20 103 188 189 271 372 453 533 534 614 694 774 855		Mor Syst	dule 0 - 3 tems Block 1 of HEBT Connectio Super FRS tems Block 2 of HEBT-SIS100 (T8 SIS100 HEBT - T1X1, T1(Multifunction C4 tems Block 3 of HEBT - T1F1,T1F HEBT - TAP1, T4 p-bar Target p-LINAC CR	Mod 0-3 m SIS18 - SIS100 (Mod 0 - 3 EDU) C1,T1D1-T1C2,TN(aves (CBM HADES Mod 0 - 3 2,TFF1, TSX1, TSF AP2, TCR1, THS1	(T1S1, T1S2, T1S3 C1 - T1X2,TXL1,TX 5) '1, FRF, TFC1	, T1S4) KL2,TXL3,TXL4,TP	Mo 01.06.0 Mo 01.06.0 SIS Mo 01.06.0 Mo 01.06.0 Mo 01.06.0 Mo 01.06.0 Mo 01.06.0 Mo 01.06.0 Mo 01.06.0 Mo 01.06.0 Mo 01.06.0 Mo 01.06.0	9 Mo 01.06.09 9 Do 22.02.18 5 100 9 Mi 01.03.17 9 Fr 13.10.17 9 Di 03.04.18 9 Fr 28.09.18 9 Fr 14.09.18 9 Di 29.08.17 9 Do 21.12.17 9 Do 21.12.17 9 Mi 17.01.18 9 Do 15.02.18 9 Mi 25.04.18		y: Oct. 1	13, 2 (

Excitation function of particle production

Central Au+Au collisions 4π yields

Knowledge about multi-strange baryons at energies below 10 AGeV very limited.

₫

<u>К</u>

Experimental strategy towards strange bound states

Experimental strategy at beam energies < 10 AGeV:

- allow for large event samples (P ~ 10^{-8} , N_{signal} > $1000 => N_{event} > 10^{11}$
- reduce combinatorial background as much as possible
- tag events for strangeness content (by K⁺, (K⁰))
- detect K⁺ as efficiently as possible
- compact kaon PID

Kinetic freeze out

Hadrons in Medium

Μ*(ρ)	(mass)
Γ* (ρ)	(width)
σ* (ρ)	(cross section)

N.Herrmann, PI, Uni-HD 53

W.Weise, Prog. Theor. Phys. Suppl. 149 (2003)

$$<\overline{qq}>$$

 1
 0.6
 0.2
 0
 1
 2
 ρ/ρ_0
 3
 4
 200
T [MeV]

GOR – relation:
$$m_\pi^2 f_\pi^2 = - < m_q > \left< \overline{q} q \right>$$

In-medium effects in finite systems: 'Trivial'

> Fermi motion Pauli blocking Collisional broadening

'Non-trivial'

Partial restoration of chiral symmetry Meson – baryon coupling Bound states

KN – interaction

KN – interaction is attractive at finite densities, but strength (depth of potential) is unclearExperimental signatures:flow of kaonsbound baryonic states

Equation – Of – State

DBHF: E. N. E. van Dalen, C. Fuchs, A. Faessler, EPJ. A 31,29 (2007)

The EOS is soft up to E_{beam} =1.5 AGeV (ρ_{max} = 2 – 2.5 ρ_0). Soft EOS does not support neutron stars with M_{NS}=2M₀

Excitation function of deuteron sideflow

Flow systematics at high energies

