Resonant coherent excitation of heavy ions in a crystal at relativistic energies

Toshiyuki Azuma AMO Physics Lab., RIKEN, JAPAN

Alternative to X-ray laser

Toshiyuki Azuma AMO Physics Lab., RIKEN, JAPAN

REAL X-RAY PHOTON: HHG / XFEL

High harmonics generation

X-ray FEL

SACLA

REAL X-RAY LASER

1-10keV XFEL

25eV proto-type FEL

dream or reality ?

Pump and Probe experiments of highly-charged ions

VIRTUAL X-RAY PHOTON SOURCE

a tiny thin Si crystal

$1 - 10 \ \mu m$ thick 10 mm diameter

What can we do for highly charged heavy ions ?

@HIMAC: Population manipulation in the X-ray domain

Pump-probe experiment

Double excitation

Y. Nakano et al., PRL 102, 085502 (2009) Y. Nakai et al., PRL 101, 113201 (2008) Y. Nakano et al. PRA 85, 020701(R) (2012)

@GSI: High-resolution spectroscopy

Y. Nakano et al. PRA 87 060501(R) (2013)

Crystal irradiation

Silicon crystal

- "virtual photon" source
- spectrometer

Boy's adventure

Laser excitation

Resonant coherent excitation (RCE)

Oscillating electric field felt by the ion

- 1. Derivative of the periodical potential
 - \rightarrow spatially periodic field

$$\mathbf{F}(\mathbf{r}) = -\nabla \mathbf{V}(\mathbf{r})$$

= $\sum_{\mathbf{g}} 2\pi i \mathbf{g} V_{\mathbf{g}} \exp(-2\pi i \mathbf{g} \cdot \mathbf{r})$

- 2. Lorentz transformation into the projectile frame
 - → temporally oscillating field

Oscillating electric field felt by the ion

- 1. Derivative of the periodical potential
 - \rightarrow spatially periodic field

$$\mathbf{F}(\mathbf{r}) = -\nabla \mathbf{V}(\mathbf{r})$$

= $\sum_{\mathbf{g}} 2\pi i \mathbf{g} V_{\mathbf{g}} \exp(-2\pi i \mathbf{g} \cdot \mathbf{r})$

- 2. Lorentz transformation into the projectile frame
 - → temporally oscillating field

Lorentz Contraction

$$\mathbf{F}'(t') = \sum_{\mathbf{g}} 2\pi i V_{\mathbf{g}} \begin{pmatrix} \gamma g_x \\ \gamma g_y \\ g_z \end{pmatrix} \exp(-2\pi i \gamma_{\mathbf{g}} \cdot \mathbf{v} t) \text{ Freq.}$$
Pol.

typical amplitude $IF'(t')I = 10^{11} V/m$ $\rightarrow 10^{15} W/cm^2$ of photon irradiation

RCE of high energy ions

Transition energy

In principle ANY energy for RCE-photon is available

1D-RCE

	Axial-channeling (1D-RCE)	
trajectory	axis • •	
periodic potential	d d k	
continuum potential	Axial potential	
impact parameter dep.	Yes	

2D-RCE

	Axial-channeling (1D-RCE)	Planar-channeling (2D-RCE)
trajectory	axis • •	plane
periodic potential	d c k	$ \begin{array}{c} l \\ (k,l)=(1,1) \\ (k,l)=(1,2) \\ k \\ \end{array} $
continuum potential	Axial potential	Planar potential
impact parameter dep.	Yes	Yes

3D-RCE	C. Ko	ndo at al, PRL 97 135	503(2006)
	Axial-channeling (1D-RCE)	Planar-channeling (2D-RCE)	Random (3D-RCE)
trajectory	axis •	plane	
periodic potential	d d k	l $(k,l)=(1,1)$ $(k,l)=(1,2)$ k	$ \begin{array}{c} $
continuum potential	Axial potential	Planar potential	
impact parameter dep.	Yes	Yes	No

3D-RCE

 \rightarrow frequency traversing the atomic planes

the atomic planes are specified by corresponding to reciprocal vector of with Miller Index (*k*,*l*,*m*)

$$\vec{g}_{klm} = k\vec{A}^* + l\vec{B}^* + m\vec{C}^*$$

3D-RCE conditions

$$E_{trans} = h v_{k,l,n}(\theta, \phi)$$

So many resonance conditions in random incidence !

Scanning the crystal angle with respect to the beam, charge state distribution of ions are monitored

3D-RCE resonance profile

391MeV/u H-like Ar¹⁷⁺

C. Kondo at al, PRL 97 135503(2006)

Population Control

Double Resonance

Double resonance / 3D-RCE

Simultaneously, 2 oscillating fields of different frequencies are applied for 2 transitions

Double Resonance (3 level system in atom)

Double Resonance (3 level system in atom) Ladder: highly-excited: Ar¹⁷⁺ Ladder: doubly excited Ar¹⁶⁺ 2p² 3s/3d 3287.0 eV 611/613 eV Hard X-RAY **2**p Soft X-ray 1s2p 3323 eV 3139.6 eV Hard X-ray **1s** Hard X-RAY 1s² Lambda: dressed Ar¹⁶⁺ 1s2p 15.0 eV VUV 1s2s 3139.6 eV 1s² Hard X-RAY Oct. 15, 2014 FAIR conference@Worms

low electron density in the neighborhood of atomic planes

ionization : decrease deexcitation: increase high electron density in the neighborhood of atomic planes

ionization : increase deexitation: decrease

High precision spectroscopy

e⁻ - e⁻ correlation

Experimental set up

7 μm-thick Si crystal High-resolution goniometer (μrad) Four sets of x-ray detectors

Raw X-ray spectra

Channel

Y. Nakano et al., Phys. Scr. T144, 014010 (2011).

X-ray spectra

RCE spectra

RCE spectra

Our progress

Exp. 2007: crystaline coherence (published in 2008)

Exp. 2009: 2s-2p_{3/2} in Li-like U⁸⁹⁺ (publised in 2013)

RAPID COMMUNICATIONS

PHYSICAL REVIEW A 87, 060501(R) (2013)

Resonant coherent excitation of the lithiumlike uranium ion: A scheme for heavy-ion spectroscopy

Y. Nakano, ^{1,2,*} Y. Takano, ^{1,3} T. Ikeda,¹ Y. Kanai,¹ S. Suda, ^{1,2} T. Azuma,^{1,2} H. Bräuning,⁴ A. Bräuning-Demian,⁴ D. Dauvergne,⁵ Th. Stöhlker,^{4,6,7} and Y. Yamazaki^{1,3} ¹*RIKEN Advanced Science Institute, Saitama 351-0198, Japan* ²Department of Physics, Tokyo Metropolitan University, Tokyo 192-0397, Japan ³Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan ⁴GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany ⁵IPNL, Université de Lyon, Université Claude Bernard Lyon I, CNRS/IN2P3, F-69622 Villeurbanne, France ⁶Helmholtz-Institut Jena, D-0774, Jena, Germany ⁷Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität, D-07743 Jena, Germany (Received 7 September 2012; published 7 June 2013)

Next week (20.Oct.2014 -)

Resonance width

Energy Resolution: 4.4 eV $(I.I \times I0^{-3})$

$\Delta P/P$	7 x 10 ⁻⁴	< 10-4 🗲	
<u>Energy loss</u>	5 x 10 ⁻⁴		
Divergence	I x 10 ⁻⁴		
Stripper 9	x 10 ⁻⁵		
Collision I	x 10 ⁻¹³		
Natural width	I x 10 ⁻¹⁴		

Electron cooling of the beam

2009

Radiative Recombination $U^{90+} + e^{-} \rightarrow U^{89+}$

Better beam transporttation from ESR

CRYRING moved from Manne-Siegbahn to GSI in 2013. Injection of ions at highest charge state from ESR into CRYRING. Oct. 15, 2014 FAIR conference@Worms

FAIR

NEXT STEP: SIS100 / APPA

RCE channeling is excelent

- Any energy is achievable (wave-length tunable)
- Quite high efficiency (good for rare ions)
- High resolution (not limited by the detecotr)
- Two color experiments are possible

However, RCE channeling requires

- Low emittance/small divergence

(cooling)

NEXT STEP: HESR

A tiny thin crystal is almost nothing for the beams

RCE is good for

- monitoring absolute beam-energy
- monitoring beam-luminocity
- atomic transition: U⁹¹⁺
- nulcear transition: stable-lived nuclei
- nulcear transition: short-lived nuclei

[Dynamics] Coherent control of the level population of the heavy ions in the x-ray region

[Spectroscopy] New novel technique for high precision spectroscopy

Alternative to optical technique