

Simulation of Ds semileptonic decay

Lu Cao June 26th, 2013

Outline

- Introduction & significance
- Check the decay models with MC truth
- Reconstruction (ongoing)
- Summary & outlook

Introduction & significance

- Semileptonic decays Ds-> e + v + η,η' are an excellent environment for precision measurements of the CKM matrix element |V_{cd}| and |V_{cs}|.
- Form factor encapsulates QCD boundstate effects; relates to the probability of forming final state at given q².
- The investigation opens a new approach to improve the measurement of mixing angle for η and η'.

Introduction & significance

- Semileptonic decays Ds-> e + v + η,η' are an excellent environment for precision measurements of the CKM matrix element |V_{cd}| and |V_{cs}|.
- Form factor encapsulates QCD boundstate effects; relates to the probability of forming final state at given q².
- The investigation opens a new approach to improve the measurement of mixing angle for η and η'.

pbarpSystem	
-> Ds- Ds+	BR_{PDG}
	2.67%
-> K- K+ pi-	5.49%

Production Rate of Ds pair

$$R = \mathcal{L} \cdot \sigma \cdot \varepsilon \cdot t \cdot \mathcal{BR}$$

 $= 10^{32} (cm^2) \cdot \mathbf{10} (nb) \times 10^{-24} (cm^2/b) \cdot \mathbf{5} \times \mathbf{10^{-2}} \cdot \mathbf{3} \times 10^6 (s) \cdot 2.67\% \times 5.49\%$ $\simeq 220$

Partial Rate of Ds semileptonic decay

Previous measurements have been carried on CLEO-c, BaBar, etc..

$$\frac{d\Gamma(Ds \to v lX)}{dq^2} = \frac{G_F^2}{24\pi^3} |V_{cx}|^2 p_x^3 |f_+(q^2)|^2$$

Check the decay models with MC truth

pbarp system nol		noPhotos
-> Ds- Ds+		
- T	-> eta e+ nu_e	PHOTOS ISGW2
- T	-> pi+ pi- pi0	ETA_DALITZ
->	K- K+ pi-	?

D_DALITZ

in EvtGen of the released PANDAROOT provides Dalitz amplitude for three-body $K\pi\pi$ D decays: $D^+ \rightarrow K^-\pi^+\pi^+$, $D^0 \rightarrow K^-\pi^+\pi^0$, etc..

Check the decay models with MC truth

pbarp system	noPhotos
-> <mark>Ds- Ds+</mark>	
	PHOTOS ISGW2
	ETA_DALITZ
-> K- K+ pi-	DS_DALITZ

D_DALITZ

in EvtGen of the released PANDAROOT provides Dalitz amplitude for three-body $K\pi\pi$ D decays: $D^+ \rightarrow K^-\pi^+\pi^+$, $D^0 \rightarrow K^-\pi^+\pi^0$, etc..

Check the decay models with MC truth

pbarp system	noPhotos	
-> Ds- Ds+		
	PHOTOS ISGW2	
-> pi+ pi- pi0	ETA_DALITZ	
-> K- K+ pi-	DS_DALITZ	

D_DALITZ

in EvtGen of the released PANDAROOT provides Dalitz amplitude for three-body $K\pi\pi$ D decays: $D^+ \rightarrow K^-\pi^+\pi^+$, $D^0 \rightarrow K^-\pi^+\pi^0$, etc..

DS_DALITZ

for *Ds->KKπ* mode, with the resonance contributions of K*(892)K⁺, K*₀(1430) K⁺, f₀ (980) π⁺, Φ(1020) π⁺, f₀ (1370) π⁺, f₀ (1710) π⁺.

Lu Cao, Simulation of Ds semileptonic decay

[1] CLEO Collaboration, Phys.Rev.D79:072008,2009[2] BABAR Collaboration, Phys.Rev.D83:052001,2011

Evt=2k

Decay length with MC truth

The dalitz distribution plot agrees the experimental data [3] very well, then ensures the correctness of ETA_DALITZ in the present EvtGen reasonably.

[3] KLOE Collaboration, JHEP 05, 006 (2008).

6-26-2013

pbarp system	noPhotos	
-> Ds- Ds+		FORSCHUNGSZENTRUM
	PHOTOS ISGW2 ETA_DALITZ DS_DALITZ	No direct Dalitz information to compare with simulation because of the missing neutrino in this decay.

Possible semileptonic decay models in EvtGen:

Model	Description	Example channel
SLPole	implements a pole form parameterization	$B^0 \to \rho^- \mu^+ \nu_\mu$
ISGW	the first exclusive model [4] to calculate rates to channels other than the pseudoscalar and vector ground states	$\bar{B}^0 \to D^{*+} e \nu$
ISGW2	an updated version [5] of ISGW designed to make "best estimates" within the context of a constituent quark model that fully respects Heavy Quark Symmetry	$\bar{B}^0 \to D^{*+} e \nu$
HQET	pseudoscalar semileptonic decay to a vector meson	$B \rightarrow D^* l \nu$

[4] N. Isgur, D. Scora, B. Grinstein, and M.B. Wise, Phys. Rev. D39, 799 (1989).

[5] D. Scora and N. Isgur, Phys. Rev. D52, 2783 (1995).

q² of the lepton-neutrino syst. in MC truth

$$Ds^+ \rightarrow \eta + e^+ + \nu_e$$
 Evt=10k

ÜLICH

Evt = 2k

Reconstruction: Ds⁻ -> K⁺ K⁻ pi⁻

Mass constraint fit

χ^2 probability distribution

Evt = 2k

Chi2 probability distribution of Ds mass constraint fit

Vertex Fit

Lu Cao, Simulation of Ds semileptonic decay

Lu Cao, Simulation of Ds semileptonic decay

Lu Cao, Simulation of Ds semileptonic decay

Reconstruction strategy for Ds⁺

Summary & outlook

Check and develop the decay models:

ETA_DALITZ, ISGW2, DS_DALITZ

- Access MC truth for comparing
- Reconstruct Ds- (ongoing)
 - Improve the signal/background ratio
- Reconstruct Ds+
- Evaluate form factor and total reco. efficiency

PANDA XLV. Collaboration Meeting @ GSI

Thank you

I.cao@fz-juelich.de