Calculation and measurement of cluster velocities

Bundesministerium für Bildung und Forschung

Westfälische Wilhelms-Universität Münster Alexander Täschner (taschna@uni-muenster.de)

Measurement of the target thickness

Simulation of the nozzle flow

- inviscid flow is assumed (high Reynolds number)
 ⇒ entropy is conserved
- stationary quasi-one-dimensional model: nozzle geometry described
 - by area A(z)
- different equations of state can be used, e.g.
 - perfect gas
 - Van der Waals gas

Velocity of perfect gas

Measurements at FERMILAB E835

good agreement between the theoretical speed of the perfect gas and the speed of the clusters

Region of operation for cluster jet targets

Velocity determination via time-of-flight

TOF spectrum of clusters

Cluster velocity at 8 bar isobar

Velocity distributions at 8 bar isobar

Cluster velocity at various isobars

Velocity of the Van der Waals gas

Van der Waals model for 8 bar isobar

Van der Waals model for 17 bar isobar

Transition temperature

Description of the measured cluster velocities

 Van der Waals model provides an accurate description of the measured data with two free parameters z_l and z_g:

$$u_{C}(p_{0}, T_{0}) = egin{cases} u_{VdW}(p_{0}, T_{0}, z_{I}) & ext{for} & T_{0} < T_{tr}(p_{0}) \ u_{VdW}(p_{0}, T_{0}, z_{g}) & ext{for} & T_{0} \ge T_{tr}(p_{0}) \end{cases}$$

 T_{tr} : pressure dependent transition temperature

• Fit to the measured data:

MCT1MCT2all data
$$z_{\rm l} \ / \mbox{mm}$$
0.736(37)0.445(14)0.500(15) $z_{\rm g} \ / \mbox{mm}$ 1.52(20)1.67(20)1.61(16)AAD \/ %4.45.15.4average absolute deviation (AAD) \approx 5 %

Description of the measured isotherms

Cluster formation process

Summary and outlook

- Precise technique for velocity measurements of clusters
- Comparison between measurements and simulation: \Rightarrow better comprehension of the cluster production process \Rightarrow important for improved nozzle design / cluster density
- Found two cluster regimes: conventional targets
 - Clusters formed from condensated gas
 - Cluster velocity = perfect gas velocity
 - Lower density
- In the future:

Münster type (at highest density)

- Clusters formed from evaporation of liquid
- Cluster velocity = velocity of real gas
- Higher density

Investigation of the mass distribution of the clusters

Additional slides

Time-of-flight method

Calibration of the time-of-flight

TOF spectrum of the calibration source

Calibration of TOF measurements

Description of the measured isobars

