

SiPM-Related Projects in Vienna Updates

Ken Suzuki <<u>ken.suzuki@oeaw.ac.at</u>>

Organizational structure

SMI has the following **structure**:

Ken Suzuki

16.02.2013

Team

Present Members

Johann Marton	Staff	
Johann Zmeskal	Staff	
Ken Suzuki	Staff	
Stefan Brunner	PhD Stuent	
Lukas Gruber	PhD Stuent	
Albulena Berisha	Diploma Student	

Former Members

Stefan Fossati	Work Student		
Matthias Schafhauser	Work Student		
Gamal Ahmed	PhD Student		
Florian Schilling	Diploma Student		
Mariana Rihl	Diploma Student		

+ Technicians (H. Schneider, L. Stohwasser, D. Stückler)

Ken Suzuki

- Since 2007-
- 7 Publications
- 1 Ph. D Thesis
- 4 Diploma Theses

- In later session
 - Stefan Brunner: ToF-PET
 - Lukas Gruber: dSiPM, SciTil

- In this talk
 - A few topics among the rest

- Beam Profile Monitor with SciFi (2007-2008)
- Beamline Veto Counter for π beam (2011)
- SiPM Characteristics (2007-2009)
- Timing Performance (2009-2010)
- w/ Temperature Controll

Beam Profile Monitor

KS, M. Schaffhauser, P. Bühler

Scintillating Fiber Grid

SiPM + Amplifier

Ken Suzuki

16.02.2013

8

- Fibre (square 16+16)+SiPM
- Blute force readout with conventional technique ⇔ integrated electronics
- "custom made" bias supplier
- Remotely retractable into/outof beamline
- Good excercise
- One of the earliest detector with SiPM used in a physics run (2008)

9

FOPI Beam Veto for pion beam

KS, G. Ahmed, J. Zmeskal

Secondary *π* beam line

SIPM directly attached to the scintillator with a grease, wrapped with teflon tape

Ken Suzuki

16.02.2013

Halo2 (photo)

preamp and cabling in a limited space

Ken Suzuki

16.02.2013

Halo2 (photo)

Inserted in FOPI (GEM-TPC, CDC, Magnet)

Ken Suzuki

16.02.2013

- Very large signal ~1V. (scint. could be thinner)
- Efficiency ~99.9%
 - Massive heat souce (GEM-TPC and RPC) and cooler caused temp. fluct. of >10 °C/0.5 hr.
- *PMT* cannot be an option!

SiPM Characteristics

S. Fossati, M. Schafhauser, G. Ahmed, KS, J. Marton

Temperature Dependence!

Photonique sensor had also nice features...

- . less sensitive to temperature / bias voltage v
- . lower operation voltage
- . lower noise

Ken Suzuki

Timing performance measurement

K.S, G. Ahmed, J. Marton

NIMA639 (2011) 107 NIMA652 (2011) 528

Time resolution

@+10°C

der Wissenschafter

Time resolution

@ -10°C.

Ken Suzuki

16.02.2013

A Comment

- Timing resolution improves drastically by operating the device at higher voltage
- Due to even more drastic increase of dark noise at high OV, however, one can not operate it at such a regime.
- New Hamamatsu MPPC due in a few months
- has wider operational voltage = can exploit much improved time resolution!

"Recent" Projects

- SiPM Characteristics
 - Rate capability = Recovery Time Measurement = Double Hit Resolution Measurement
- Application
 - 8x8 Matrix with light concentrator
 - SIDDHARTA-2 Active Shield

Recovery time measurement

L. Gruber, S. Brunner, KS, J. Marton, A. Scordo, O. Vazquez Doce, A. Romero Vidal

- Rate capability
 - Better or worse than PMT (a few MHz with booster circuit)?
- 1st order approx. inverse proport. to pixel size
 - Hamamatsu 1mm² 25µm=20ns, 50µm=50ns, 100µm=100-200ns
- For a detector development at AMADEUS (@DAΦNE) environment, want to investigate
 - double hit resolution
 - recovery time

Ken Suzuki

Measuring after-pulsing Step 1: pulse finding

- MPPC dark noise

 Self trigger at ~0.2 PE
- Use fast amplifier
- Use 1GHz digitizer
 CAEN V1729
- Fit waveform with superposition of single avalanche response function
 - Measure response function directly from data

5

Measuring after-pulsing Step 3: fit timing distribution

- Distribution of first pulse arrival time can be expressed with a few parameters
 - Probability and time constant + Dark Noise rate
 - 1 exponential function does not fit well
 - 2 exponential function is best
 - Issue: distortion of the distribution in the 1st 10 ns
 - Pulse finder inaccurate
 when gain is low
 - Effect estimated by simulation

Delay time range

or **Full illumination**

Ken Suzuki

28

Waveform Digitizer 5GS/s (DRS4 chip - CAENV1742)

ÖPG Tagung, Graz, 18 – 21 Sept. 2012

Ken Suzuki

Ken Suzuki

16.02.2013

• MC Simulation that includes

Status

- cross talk
- after pulse
- dark noise
- Fitting with MC for each parameter condition
- Global Fit to data with different conditions (OVs)
- Paper in preparation

Ken Suzuki

31

Funny Observation

Ken Suzuki

32

Array detector: larger area+position sensitivity

L. Gruber, S. Bruner, M. Rihl, KS, M. Cargnelli, P. Bühler, J. Marton, H. Orth

How the others do

S. Korpar, talk at RICH-2010

Light concentration

Can be used if light comes within the limited solid angle

 Winston cones produce large angular spread at the exit surface – photons can miss the active area

Ken Suzuki

 hemispherical light concentrators give better results with large spacing between concentrator and SiPM

16.02.2013

der Wissenschafte

MAGIC

FACT project

- SiPM based module for camera for a Cherenkov telescope (DWARF: Dedicated multi Wavelength AGN Research Facility)
- 144 SiPMs + Winston cones
- 36 electronic channels

T. Krähenbühel (ETH Zurich) @ PD09

for update look at the previous talk and poster

Ken Suzuki

Our approach

- It consists of 64 regularly arranged pyramid-shaped funnels with round edges and has been designed to be used with an array of 3 x 3 mm² SiPMs.
- The funnels were produced by electro-erosion.
- Simple geometry
- Robust 🗲
- Easy to fabricate

Ken	Suzuki	

Parameter	Design value			
Dimensions (L x W x H)	$65~\text{mm} \times 65~\text{mm} \times 4.5~\text{mm}$			
Detection area	$56 \text{ mm} \times 56 \text{ mm}$			
Number of cells (funnels)	64			
Funnel entrance aperture	$7 \times 7 \text{ mm}^2$			
Funnel exit aperture	$3 \times 3 \text{ mm}^2$			
Funnel height	4.5 mm			
Fill factor (incuding rim)	69 %			
Fill factor	93 %			
Basic material	Brass			
Coating	Aluminum, Chromium			

Prototype Design

37

Prototype photos

Ken Suzuki

- two dimensional scan of 3x 7x7 mm²surface with 100 μm step size = 15k points
- One scan takes ~10 hours ~one night
- 100 µm spot (1~4 cells)

Österreichische Akademie der Wissenschaften

Ken Suzuki

16.02.2013

41

x Projection Position vs. Intensity

Ken Suzuki

16.02.2013

SIDDHARTA-2 "Active Shield"

F. Schilling, J. Zmeskal

44

SciTil / dSiPM

L. Gruber, S. Brunner, J. Marton, K. Suzuki

TOF-PET

S. Brunner, A. Hirtl, L. Gruber, J. Marton, K. Suzuki

- SiPM Array
 - Evaluation of the light concentrator with laser
 - with better collimated beam, finite incident angle
 - Digesting the CERN data
 - Readout electronics!
 - incl. temperature regulation
 - Noise
 - Improving cooling system?
- Recovery time / Rate capability test
 - Next month (November) test at LNF

Spare Slides

Lukas

Position sensitive SiPM detector for Cherenkov applications

- L. Gruber^{1,2}, G. Ahmed¹, S. E. Brunner^{1,2}, P. Bühler¹, J. Marton¹, K. Suzuki¹
 - ¹Stefan Meyer Institute for Subatomic Physics (SMI), Austrian Academy of Sciences, 1090-Vienna, Austria
 - ²Faculty of Physics, Vienna University of Technology, 1040-Vienna, Austria

Ken Suzuki

- A prototype of a position sensitive photo detector with SiPM readout has been built and tested.
- The detector module consists of an array of 8 x 8 SiPMs (Hamamatsu 3 x 3 mm²), an array of suitable light guides (light concentrator) and in-house built preamplifier boards.
- First measurements showed that the prototype detector is working very well. The light concentrator clearly increases the acceptance of the detector.
- The Chromium-plated light concentrator partly shows inhomogeneous behavior due to fabrication defects and inhomogeneous surface quality. The Aluminum-plated module is used for further measurements because of better performance.
- It was shown that the measurements are in good agreement with the simulations.

Hans

Test equipment at SMI

Test bench with insulation vacuum vessel, vacuum pump, Peltier cooling Bias voltage supply (Keithley), preamp supply voltages Picosecond laser system @ 408 nm (32ps) for timing tests Optical bench for laser beam (coupling to optical fiber) Fast digital oscilloscope CAMAC/VME DAQ system for TDC, QADC data acquisition

Ken Suzuki

SiPM

CALICE – first large system experience

only 20 bad channels in 3 years of testing – mostly mechanical problems

Ken Suzuki

Calorimetry for faster neutrons ?

Radiator:

- plastic scintillator (no PSD)
- Organic liquid scintillator (PSD, but difficult to handle)
- New organic crystalline scintillator (PSD, high light output, e.g. potassium dihydrogen phosphate KDP; 9,10-diphenylanthracene DPA, sizes??)

DPA ... 20.000 photons/MeV, fast 54

Ken Suzuki

New developments

dSiPM-Digital SiPM (Philips)

Signal from each pixel is is digitized and the information is processed on chip:

- time of first fired pixel is measured
- number of fired pixels is counted
- active control is used to recharge fired cells
- 4 x 2047 micro cells
- 50% fill factor including electronics
- integrated TDC with 8ps resolution

Ken Suzuki

Current work and future plans

- Test of different Preamplifiers, effect on the timing performance
- Instrumentation of light-catcher Cherenkov module, start with MPPC, other sensors?
- Tests with Cherenkov light (e.g. aerogel radiator)
- Test with double laser pulse

he Akadem haften

"double-hit" setup

Samstag, 16. Februar 13

Ken Suzuki

16.02.2013

Perspectives for HP-3

- High light level regime
- TOF for PANDA
- Application in Calorimetry or neutron detection

Ken Suzuki

Ken

Remark: Definition of

3-4

Gain characteristic

Gain linearity

The MPPC gain has an excellent linearity near the recommended operating voltage.

[Figure 5] Gain vs. reverse voltage (a) S10362-11-025U/C

[Figure 4] Frequency distribution example of output charge

Alternative: using current (over estimate)

Ken Suzuki

16.02.2013

Simple(?) dark count

Measurement examples of dark count rate are indicated below.

[Figure 11] Dark count vs. ambient temperature (a) S10362-11-025U/C

In order to define "p.e.", gain has to be measured

Ken Suzuki

Simple(?) measurement

Gain kept constant

Ken Suzuki

16.02.2013

KAPOBOTISEA

Samstag, 16. Februar 13

62

Marking Problem

- Color coding (like resister)
 - side
 - <10 colors clearly distinguis</p>
 - against scratch, fading

- pants
 - a sheet of paper with 2(3) holes inserted from bottom
 - can read from top / bottom, can be printed

APD Size

sterreichische Akademie er Wissenschaften

					_
Model Name	SSPM_0701BG	ASS_0604_02	SSPM_0611B4 Top Vi	SSPM_0604BE	Side View
Effective Area	1mmx1mm	1mmx1mm			Positive Bia
Price	€110	70€/ch	5 10 4 00 5 10 5 10 4 00 5 10 5 10 5 10		
P.D.E.	40%@560nm 15%@450nm	←			Negative Bia
Gain	4x10 ⁵	¢	6x10 ⁴	4x10 ⁵	
N _{pixel}	550	¢	1700	8100	
Dark Current	10µA	¢	<10µA	<30µA	
Signal Risetime	<0.7ns	¢	<0.7ns	<10ns	
Capacitance	40pF	⇒	160pF	300pF	
Ken Suzu	l Iki			16.02.2013	

Which APD?

Producer	Photonique	Hamamatsu	Hamamatsu	SensL	Russian
Model Name	ASS_0604_02	S10362-50U	S10362-100U	SSPMMicro 1000X01A3	MP3D
Effective Area	1mmx1mm	1mmx1mm	1mmx1mm	1mmx1mm	1mmx1mm
Price	70€/ch	€ 100	€ 100	?€	?€
P.D.E.	15%@450nm 40%@560nm	50%@400nm 38%@500nm	65%@400nm 46%@500nm	0.15 @400nm 1 @500nm	9%@460nm 22.5%@640nm
Gain	4x10 ⁵	7.5x10 ⁵	2.4x10 ⁶	1.1x10 ⁶	6.2x10 ⁵
N _{pixel}	550	400	100	620	1024
Dark Current	10µA	270kcps	400kcps		Noisy
Signal Risetime	<0.7ns			<5ns	
Time resolution	<70ps	92ps	105ps		
Pixel Recovery Time				<20ns?	7µs
Excess Noise Factor	<1.2				
Capacitance	40pF	35pF	35pF		

Ken Suzuki

16.02.2013