Fast Event Reconstruction

Ivan Kisel Uni-Frankfurt, FIAS, GSI

Stages of Event Reconstruction

- Hough Transformation
- Elastic Neural Net

(r, C)

K-

HERA-B: Track Finding in the Pattern Tracker

Extremely low resolution and efficiency of the pattern tracker of HERA-B

Parameter	OTR	ITR	
Hit resolution, μm	500	200	
Hit efficiency, %	90	86	

HERA-B Competition: CATS (CA), RANGER (KF), TEMA (HT)

Tracking quality

	CA	TS	RANGER		TEMA	
Resolutions	OTR	ITR	OTR	ITR	OTR	ITR
$x, \mu m$	246	93	322	91	291	98
y, mm	3.7	1.4	5.0	1.4	4.1	1.4
t_x , mrad	0.62	0.24	0.71	0.24	0.76	0.26
t_y , mrad	4.73	1.79	6.96	1.79	5.39	1.87
Pulls						
$\frac{\text{Pulls}}{P(x)}$	1.59	1.11	1.37	1.10	1.45	1.06
Pulls P(x) P(y)	1.59 1.52	1.11 0.98	1.37 1.25	1.10	1.45 1.81	1.06 1.16
Pulls P(x) P(y) $P(t_x)$	1.59 1.52 1.16	1.11 0.98 0.93	1.37 1.25 1.25	1.10 1.11 0.89	1.45 1.81 1.18	1.06 1.16 1.15
Pulls P(x) P(y) $P(t_x)$ $P(t_y)$	1.59 1.52 1.16 1.53	1.11 0.98 0.93 0.99	1.37 1.25 1.25 1.39	1.10 1.11 0.89 1.15	1.45 1.81 1.18 1.92	1.06 1.16 1.15 1.23

Resolutions, pulls P and mean length of reconstructed primary tracks.

CATS outperforms other alternative packages (SUSi, HOLMES, L2Sili, OSCAR; RANGER, TEMA) in efficiency, accuracy and speed

Ivan Kisel, Uni-Frankfurt, FIAS, GSI

FAIR Tracking Workshop, GSI, 29.10.2012 4/20

CBM STS Tracking Methods: 2005 vs. 2012

Developer	Tracking Method	2005	2012
LHEP JINR, Dubna	Conformal Mapping	1	×
ZITI, Mannheim	Hough Transformation	1	×
LIT JINR, Dubna	Track Following	~	×
Uni-Heidelberg, GSI	Cellular Automaton	~	\checkmark

CA is appropriate for complicated event topologies with large combinatorics

Cellular Automaton as Track Finder

Useful for complicated event topologies with large combinatorics and for parallel hardware

Many-Core CPU/GPU Architectures: Our Experience

CPU/GPU Programming Frameworks

- Intel Ct (C for throughput), ArBB (Array Building Blocks)
 - Extension to the C language
 - Intel CPU/GPU specific
 - SIMD exploitation for automatic parallelism
- NVIDIA CUDA (Compute Unified Device Architecture)
 - Defines hardware platform
 - Generic programming
 - Extension to the C language
 - Explicit memory management
 - Programming on thread level
- OpenCL (Open Computing Language)
 - Open standard for generic programming
 - Extension to the C language
 - Supposed to work on any hardware
 - Usage of specific hardware capabilities by extensions

Vector classes (Vc)

- Overload of C operators with SIMD/SIMT instructions
- Uniform approach to all CPU/GPU families
- Uni-Frankfurt/FIAS/GSI

Choice of CPU/GPU/Programming is a practical question

CBM CA Track Finder: Efficiency

Efficient and stable event reconstruction

CBM CA Track Finder: Scalability and Reliability

Central Au-Au collisions

- AMD 6164EH
- 12 cores per CPU, 1.7 GHz
- Openlab CERN

Strong many-core scalability and stable down to 80% detector efficiency (both on central events)

CBM Kalman Filter Track Fit Library

Conventional KF DP vs. SP Conventional KF RK4 vs. Analytical Kalman Filter Methods Kalman Filter Tools: SP_E7-4860 AN_E7-4860 • KF Track Fitter 170 DP_E7-4860 RK_E7-4860 • KF Track Smoother SP_X5680 AN_X5680 Deterministic Annealing Filter DP_X5680 RK_X5680 SP_X5550 AN_X5550 Kalman Filter Approaches: 50 DP_X5550 RK_X5550 Conventional DP KF 40 Conventional SP KF Square-Root SP KF 30 30 • UD-Filter SP Gaussian Sum Filter 20 20 Track Propagation: 10 Runge-Kutta Analytic Formula 10 50 50 Number of logical cores Number of logical cores Implementations **UD KF** Square-Root KF 18 Vectorization (SIMD): E7-4860_ITBB E7-4860_ITBB Header Files 뤈70 E7-4860_ArBB E7-4860_ArBB Vector Classes Vc X5680_ITBB X5680_ITBB Array Building Blocks ArBB X5680_ArBB X5680_ArBB OpenCL X5550_ITBB X5550_ITBB 50 X5550_ArBB X5550_ArBB Parallelization (many-cores): Open MP 40 40 30 30 OpenCL 20 20Precision: 10 10 • single double 10 50 50 Number of logical cores Number of logical cores

Strong many-core scalability of the Kalman filter library

• ITBB ArBB

KFParticle: Reconstruction of Vertices and Decayed Particles

State vectorPosition, direction,
momentum and energyr = { x, y, z, p_{x'} p_{y'} p_{z'} E }

- Mother and daughter particles have the same state vector and are treated in the same way
- Geometry independent
- Kalman filter based

KFParticle provides uncomplicated approach to physics analysis (used in CBM, ALICE and STAR)

Ivan Kisel, Uni-Frankfurt, FIAS, GSI

FAIR Tracking Workshop, GSI, 29.10.2012 12/20

KFParticle Finder for Physics Analysis and Selection

Ivan Kisel, Uni-Frankfurt, FIAS, GSI

FAIR Tracking Workshop, GSI, 29.10.2012 13/20

CBM Standalone First Level Event Selection (FLES) Package

The first version of the FLES package is vectorized, parallelized, portable and scalable

Ivan Kisel, Uni-Frankfurt, FIAS, GSI

FAIR Tracking Workshop, GSI, 29.10.2012 14/20

Parallelization in the CBM Event Reconstruction

Algorithm	Vector SIMD	MultiThreading	CUDA	OpenCL CPU/GPU
Hit Producers				
STS KF Track Fit	1	\checkmark	\checkmark	$\sqrt{1}$
STS CA Track Finder	1	\checkmark		
MuCh Track Finder	\checkmark	\checkmark	\checkmark	
TRD Track Finder	1	\checkmark	\checkmark	
RICH Ring Finder	1	\checkmark		(√/√)
Vertexing (KFParticle)	\checkmark	\checkmark		
Off-line Physics Analysis	1			
FLES Analysis and Selection	\checkmark	\checkmark		

Parallelization becomes a standard in the CBM experiment

HEP Experiments: Common Tracking Algorithms

Activities:

- 1. Experiments: CBM, ALICE, STAR;
- 2. Sub-detectors:
 - TPC (ALICE, STAR),
 - Barrel ITS ALICE, HFT STAR,
 - Forward STS CBM, FGT STAR,
- 3. Parallelization: CPU/GPU, SIMD/Threads, Languages.

Stages:

- 1. Common ITS+STS tracking;
- 2. Common ITS+TPC tracking;
- 3. Common TPC+ITS+STS tracking.

Develop a common TPC+ITS+STS tracking algorithm

STAR TPC CA Track Finder

The CA track finder is more stable w.r.t. track multiplicity and is ~10 times faster than the TF based Sti track finder.

Ivan Kisel, Uni-Frankfurt, FIAS, GSI

FAIR Tracking Workshop, GSI, 29.10.2012 17/20

ALICE HLT: Event of the First Run with the GPU CA Tracker

ALICE HLT Group

STAR HFT CA Track Finder

A common ITS ALICE / HFT STAR + STS CBM / FGT STAR CA track finder is under development

Consolidate Efforts: Common Reconstruction Package

