

Challenges and Requirements For Online Data Processing in CBM

Volker Friese GSI Darmstadt

Workshop on Fair Event Reconstruction GSI, 29 October 2012

CBM: experimental setup

Observables

- The measurement of extremely rare probes requires very high interaction rates up to 10 MHz
- Such rates drive the requirements on detectors, FEE and online computing

The challenge

- typical CBM event: about 700 charged tracks in the acceptance
- strong kinematical focusing in the fixed-target setup: high track densities
- up to 10⁷ of such events per second
- to be reconstructed precisely, fast and with high efficiency

Free-streaming Data Acquisition

Trigger signatures are complicated and require (partial) event reconstruction

No conventional trigger, but self-triggered, autonomous front-end

Signals get time stamp from system clock and are shipped to DAQ

No a-priori association of signals to physical events! "Event building" becomes non-trivial at high rates

CBM Online Computing

Running Conditions

Condition	Interaction rate	limited by	Application
No Trigger	10 ⁴ /s	archival rate	bulk hadrons, low-mass di-electrons
Medium Trigger	10 ⁵ /s – 10 ⁶ /s	MVD (speed, rad. tolerance)	multi-strange hyperons, open charm, low-mass di-muons
Max. Trigger	- 10 ⁷ /s (even more for p beam)	On-line event selection	charmonium

Detector, FEE and DAQ requirements are given by the most extreme case

Design goal: 10 MHz minimum bias interaction rate

Requires on-line data reduction by up to 1,000

Online Data Flow

- FPGA (DPB, FLIB): Data aggregation, pre-processing (e.g., cluster finding), time slice building
- CPU/GPU (FLES): (Partial) event reconstruction, data selection

Towards the CBM Online Project

Approaches to fast event reconstruction

Track finding in the STS – Cellular Automaton

Track finding: Wich hits in detector belong to the same track?

GSI, 29 October 2012

V. Friese

STS track reconstruction: Hough Tracker

3-D Hough transform

- 3-D Hough space is sliced into 2-D layers
- Histogramming operation ideally suited for FPGA
- Hough transform in non-homogeneous magnetic field is prepared offline by LUTs
- > 2-D + 3-D peak finding in Hough space
- Current implementation in CELL-BE (Sony Playstation III) as prototype for FPGA array
- Reconstruction efficiency ≈ 90 % for p > 1 GeV

Tracking in the muon detector

- "Active absorber" system: absorbers are interlayed with 6x3 detector layers
- Tracks from STS are used as seeds
- Track following with Kalman Filter
- Propgation with 4th order Runge-Kutta
- Hit association: nearest neighbour / branching / weighting

V. Friese

FAIR Event Reconstruction Workshop, GSI, 29 October 2012

Tracking in the TRD

10 - 12 identical layers

Track finding similar to tracking in the muon detector (track following + Kalman Filter)

Alternative: Standalone Track Finding in TRD

- CA algorithm similar to that in STS
- Implemented in CUDA on Tesla

GPU time multiplied by factor of 10 Speedup of the whole algorithm: 30x Speedup w/o data preprocessing: 50x

Reconstruction of RICH rings

Transform

- Ring finding by localised Hough Transform (preselection of hits)
- ➢ Ellipse ring fitter
- \triangleright Rejection of fake rings by quality criteria (ANN)
 - \succ number of hits on ring, χ^2 , largest angle
 - \succ half axes, rotation angle
- Efficiency 92 %, fake rings 3.5 / event

Trigger Signatures

- Signatures vary qualitatively:
 - local and simple: $J/\psi \rightarrow \mu^+\mu^-$
 - non-local and simple: $J/\psi \rightarrow e^+e^-$
 - non-local and complex: D,Ω->charged hadrons
- For maximal interaction rate, reconstruction in STS is always required (momentum information), but not necessarily of all tracks in STS

Trigger in the Muon System

Signature: Two main-vertex tracks after the last absorber

MUCH Trigger Implementation in CUDA

BSF:- Total Input Events / No of Background event survived after Threshold				
Threshold	Events Survived (1000 Events)	BSF		
А	431	2.32		
В	120	8.33		
С	100	10		
D	41	24.39		

- Fit triplet by straight line and extrapolate backwards to target
- Implemented in CUDA and tested on NVIDIA Tesla

Treatment of Free-Streaming Data

- Up to 1 MHZ, data can be "trivially" pre-sorted into events; reconstruction then proceeds on event base (already developed)
- For higher rates, time-based reconstruction (4-d) is required
- Work in progress

Reconstruction Algorithms: Summary

- All current algorithms are developed for deployment on a many-core CPU/CPU environment
- Languages: C++ / OpenCL / CUDA
- Development of FPGA-suited reconstruction in STS (Hough Transform) is not continued
- Current algorithms work on the event-by-event level (valid up to 1 MHz interaction rate). Work on algorithms for higher rates are under development.

Deployment of FAIRROOT on FLES

FAIRROOT on FLES

- FLES software framework not yet decided
- FAIRROOT Cons:
 - overhead (t.b. specified)
 - parallelisation unclear
- FAIRROOT Pros:
 - configuration, services, I/O already available
 - straightforward consistence with offline computing
- Not necessarily a yes-or-no decision, but rather how much and where
 - data classes and algorithms probably simple C/C++; easily to be wrapped in ROOT for I/O
 - usage of FAIRROOT infrastructure

CBM Requests to GSI-IT

- Continuation and further development of FAIRROOT is indispensable
 - time-based data flow
 - deployment on many-core systems
 - GPU support (CUDA / OpenCL)
- Fair share for experiment-specific activities
- Possible participation in CBM-specific projects:
 - FLES software framework
 - FLES online reconstruction
 - data pre-processing: FPGA or software
 - alignment and calibration
 - databases