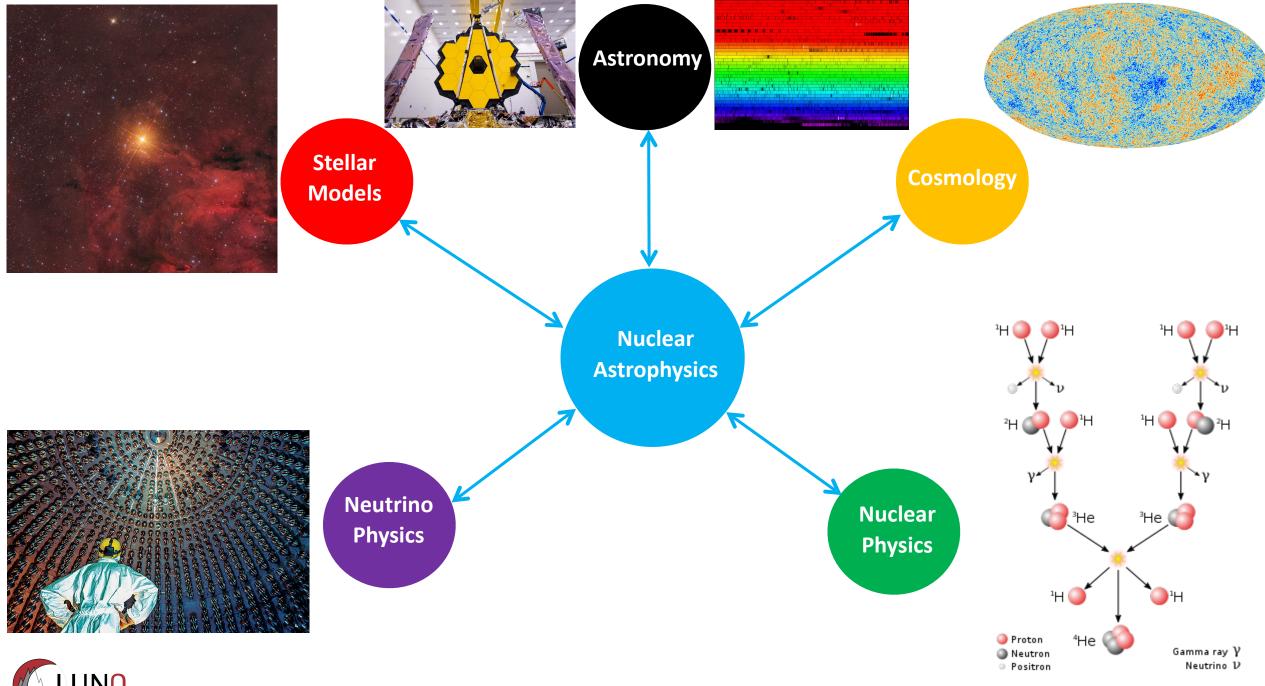
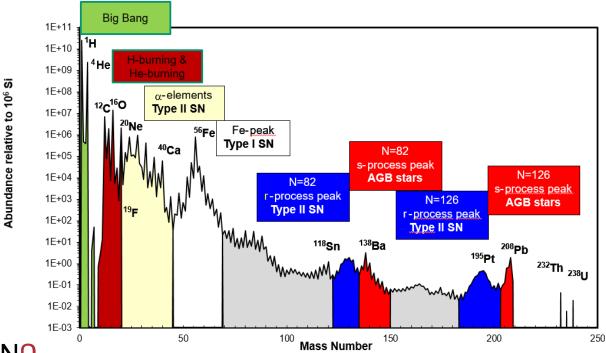
Laboratory for Underground Nuclear Astrophysics

Denise Piatti


University and INFN of Padua, via Marzolo 8 35136 Italy

email: denise.piatti@pd.infn.it

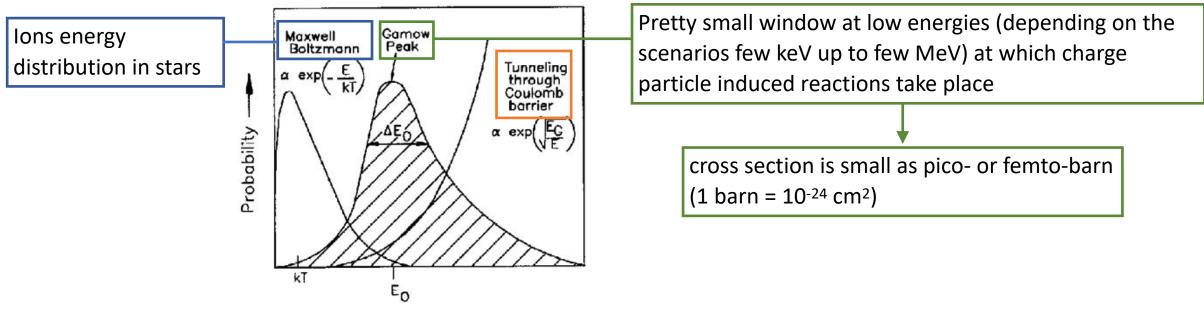


Nuclear Astrophysics

Nuclear Astrophysics aims to understand how and where most of the elements are produced with the observed abundances.

Since the <u>B2HF</u> (1957) paper we know stars are responsible for the production of most of the elements in the universe.

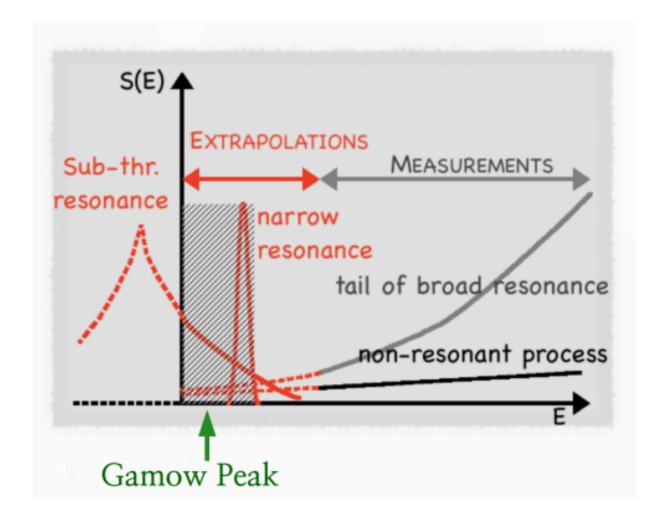
Nuclear reactions, taking place during stellar evolution, are responsible for nucleosynthesis:


- Big Bang Nucleosynthesis main output: **H,4He**, D, 3He and 7Li
- Charged particle induced reactions are responsible for the production of isotopes up to ⁵⁶Fe
- s-process
- r-process Isotopes heavier than iron
- i-process(?)
- p-process
- Cosmic ray induced reactions output: Li, Be and B

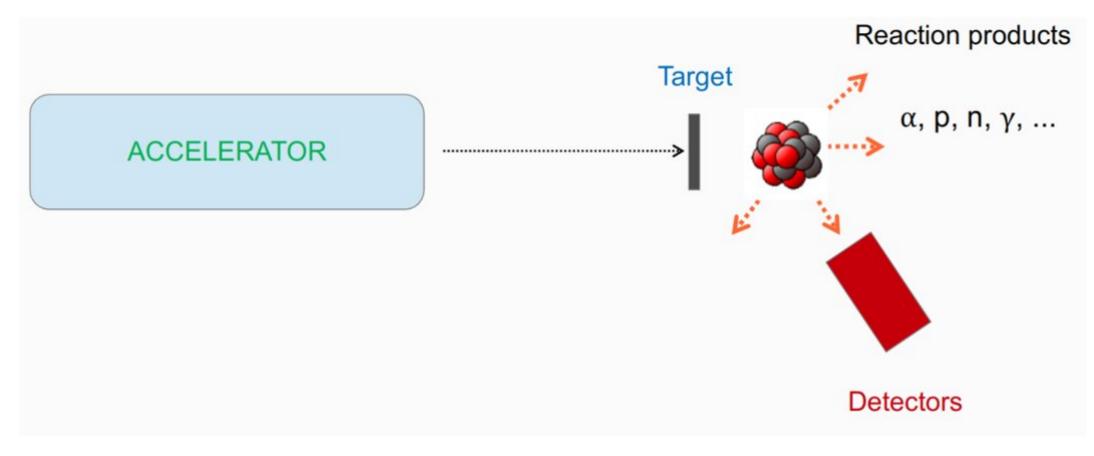
Are we done?

Absolutely not!

- More and more observational data are collected every day, sometimes confirming our understanding, sometimes highlighting a lack in our knowledge
- Precise observational data must be compared with precise predictions, which need very precise inputs, as the reaction cross section inside the Gamow window.



Energy


Are we done?

- Given the low energy at play and thus very low cross section, exponential decrease with energy, either indirect or direct measurement of a reaction rate are really hampered
- For many reactions we have to rely on extrapolation of high energy data down to Gamow energies and below

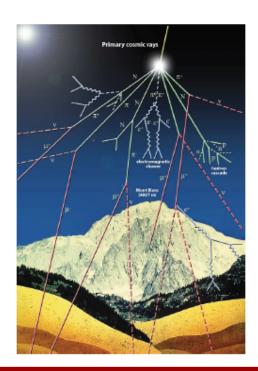
The hard life of the experimentalists

Observed Count Rate = $N_b \times N_t \times \sigma(E) \times efficiency(E)$

The hard life of the experimentalists

Observed count rate = $N_b \times N_t \times \sigma(E) \times efficiency(E)$ 1012 pps (with typical beam current ~ $\mu A \neq 1+$) from $\leq 1\%$ up to 10% in case of HPGe detector(s)

1018 atoms/cm² (solid target) up to ~60% with scintillators

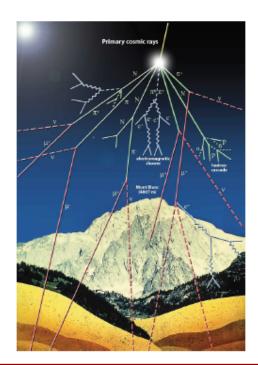

~ 10-12 barn (~ 10-36 cm²) at energies of interest

Please consider the background: environmental radioactivity and cosmic ray induced background

The hard life of the experimentalists

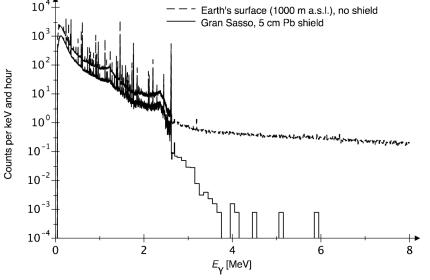
Observed count rate = $N_b \times N_t \times \sigma(E) \times efficiency(E)$ 10¹² pps (with typical beam current ~ $\mu A \neq 1+$) from $\leq 1\%$ up to 10% in case of HPGe detector(s)

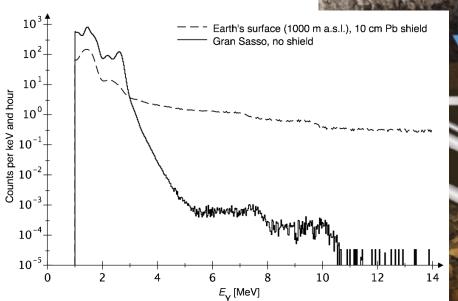
10¹⁸ atoms/cm² (solid target) up to ~60% with scintillators


~ 10⁻¹² barn (~ 10⁻³⁶ cm²) at energies of interest

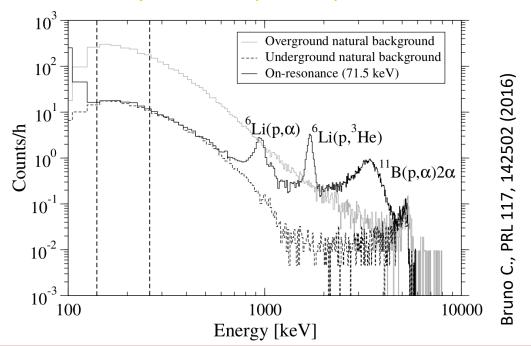
Please consider the background: environmental radioactivity and cosmic ray induced background

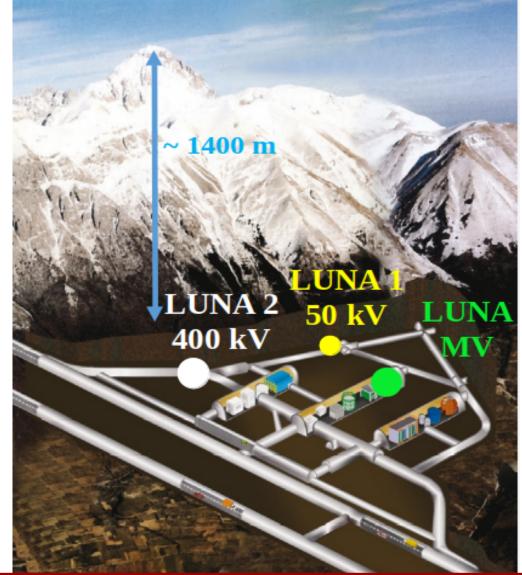
Let's go underground




Let's go underground

- LUNA is located at Laboratori Nazionali del Gran Sasso, Italy
- Shielded by 1400 m of rock (4000 m w.e.)
- Cosmic-ray induced background reduction:
 - Muon 10⁻⁶ -> γ-spectrum


Bemmerer D., EPJA 34,313 (2005)

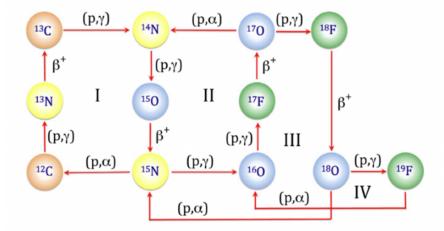


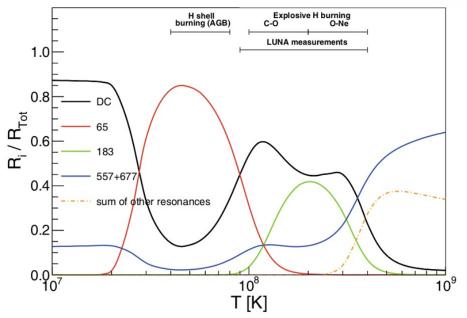
Let's go underground

- LUNA is located at Laboratori Nazionali del Gran Sasso, Italy
- Shielded by 1400 m of rock (4000 m w.e.)
- Cosmic-ray induced background reduction:
 - Muon 10⁻⁶ -> γ-spectrum
 - Neutron 10⁻³
 - by factor 15 in particle spectrum

LUNAs

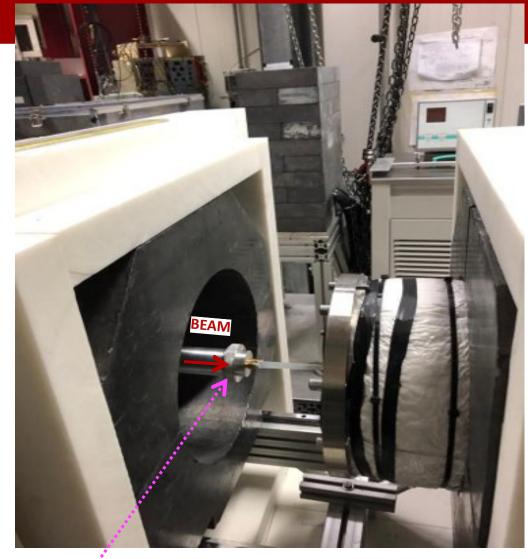
- 30 years long story -> 3 accelerators:
 - LUNA50kV(1991-2001)
 - Homemade machine [Greife U., NIMP A 350, 327 (1994)]
 - Intense H+ and He+ beam
 - LUNA400kV (2001-...)
 - HVEE machine
 - 1mA H+ and 0.5mA He+
 - High quality performance [A. Formicola et al., NIMP A 507, 609 (2003)]
 - 2 beamlines: gas target and solid target
 - 3.5 MV accelerator at the Bellotti Ion Beam facility (2023-...)
 - HVEE machine [A. Sen et al. NIMP B 450 (2019)]
 - 1mA H+, 0.5mA He+, 0.15 mA ¹²C+, 0.08 mA ¹²C++
 - Calibration and performance under study now
 - 2 beamlines


To make a long story short


Reaction	Accelerator	Astrophysical Motivation/Scenario
$\underline{D(\alpha, y)}^{6}$ Li; ${}^{3}\underline{He(\alpha, y)}^{7}$ Be; $\underline{D(p, y)}^{3}$ He	LUNA400kV	Big Bang Nucleosynthesis (BBN), Lithium problem(s)
3 He+ 3 He; $D(p,\gamma)^{3}$ He	LUNA50kV	pp-chain and Solar neutrinos
⁶ <u>Li(p,γ)</u> ⁷ Be	LUNA400kV	Stars, cosmic-ray spallation and BBN; Resonance NOT confirmed
12,13 <u>C(p,γ)</u> 13,14 N	LUNA400kV	CNO cycle kick off reactions; only few, poorly constrained data
$^{14,15}N(p,\gamma)^{15,16}O$	LUNA400kV	CNO cycle bottleneck;
$^{17,18}O(p,\alpha)^{14,15}N$	LUNA400kV	CNO cycle; crucial for oxygen isotopic abundance in AGB stars
$^{16,17,18}O(p,\gamma)^{17,18,19}F$	LUNA400kV	CNO cycle and CNO leak
<u>20</u> ,21, <u>22</u> Ne(p,γ) ^{21,22,23} Na	LUNA400kV	NeNa cycle; affecting abundances up to P
23Na(p,γ) ²⁴ Mg	LUNA400kV	NeNa-MgAl cycle link
$^{25}Mg(p,\gamma)^{26}AI$	LUNA400kV	MgAl cycle; poorly constrained resonances dominate the rate
13 C(α ,n) 16 O, 22 Ne(α , γ) 26 Mg	LUNA400kV	s-process crucial for isotopes heavier than iron

Measurement of the $^{17}O(p,\gamma)^{18}F$ 65 keV resonance


- $^{17}\text{O}(\text{p},\gamma)^{18}\text{F}$ reaction (Q = 5607 keV) kicks off the CNOIII cycle.
- Impact on the observed oxygen isotopic ratio to trace R/AGB nucleosynthesis and mixing process as well as GCE; and presolar grains origin
- For 30 < T < 100 MK ($35 < E_G < 140$ keV) the resonance $E_{cm} = 65$ keV ($E_x = 5672$ keV) dominates the reaction rate
- Only indirect measurement reported in literature: tension between results for $\Gamma_{\rm p}$
- $\omega \gamma = (1.6 \pm 0.3) \times 10^{-11} \text{ eV}$ [M.Q. Buckner et al. PRC (2015)]: $\text{cr}_{\text{exp}} = 0.08 \text{ reactions/h} !!!!!$


Fractional contributions to the reaction rate of the ${}^{17}\text{O}(p,\gamma){}^{18}\text{F}$ as a function of the temperature.

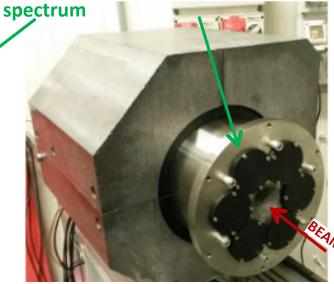
This part can move back and forth

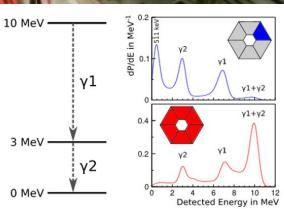
Ta₂O₅ target made by anodic oxidation with 17O (90%) enriched water

This part can move back and forth

AI CHAMBER AND TARGET HOLDER

BEAM

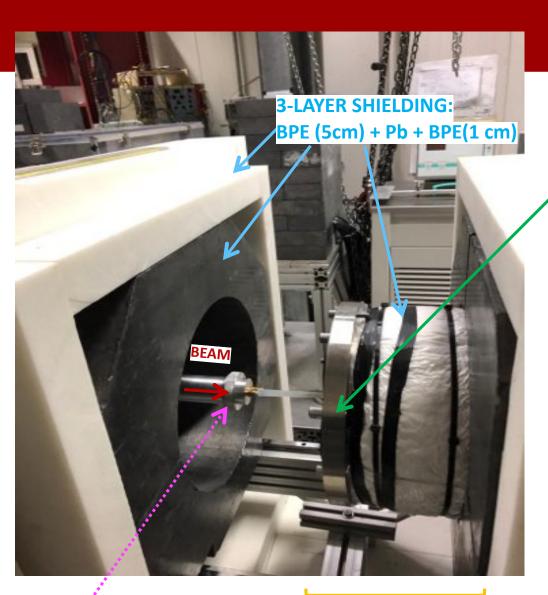

Ta₂O₅ target made by anodic oxidation with 17O (90%) enriched water



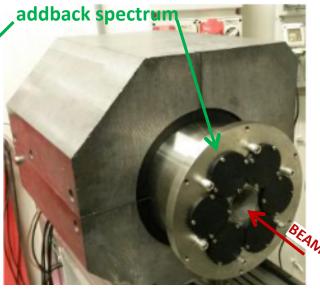
This part can move back and forth

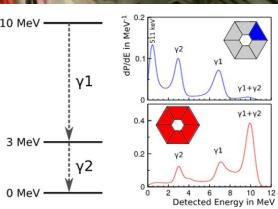
4II **BGO DETECTOR** 6 independent crystals

TAS mode possible: coincident events in different channels are summed up **OFFLINE** to produce the addback



Ta₂O₅ target made by anodic oxidation with 17O (90%) enriched water

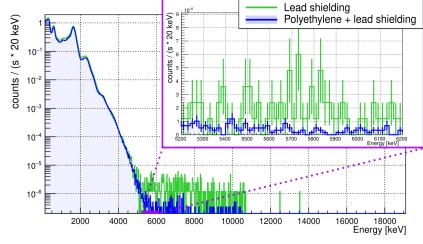


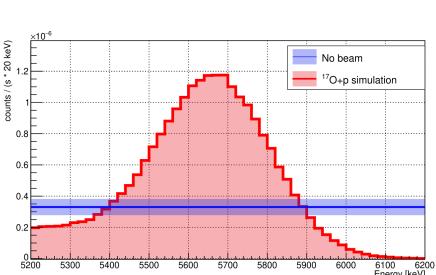


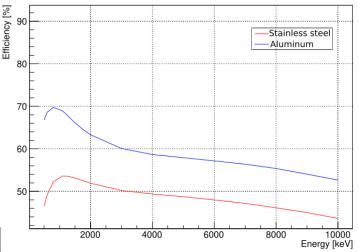
This part can move back and forth

4∏ **BGO DETECTOR** 6 independent crystals

TAS mode possible: coincident events in different channels are summed up OFFLINE to produce the




We made it!


• 3 layer shielding: BPE + Pb + BPE -> reduction of the background by a factor ~5

• Al chamber and target holder -> ~20% increase in efficiency w.r.t. previous brass and

stainless steel setup

[Skowronski J., J Phys. G 50, 045201 (2023)]

The Beam Induced Background Nightmare

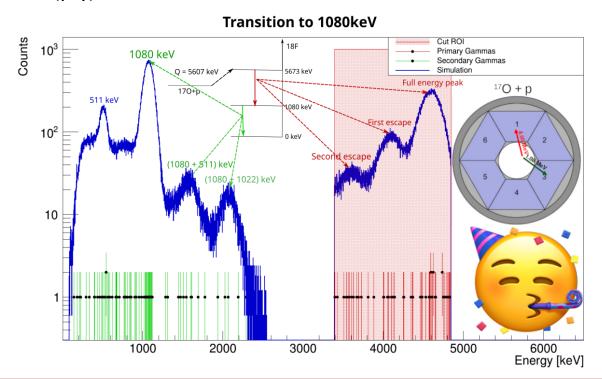
- BIB is due to contaminants in the oxide layer or in the backing that react with the beam
- The scariest contaminants are those that populates the ROI, mimicking the signal of interest, and have much higher cross section than the reaction of interest
- Ta is known for its H and D storage properties
- p+D reaction has a Q = 5493.5 keV (only $^{\sim}$ 100 keV lower than the $^{17}\text{O}(p,\gamma)^{18}\text{F}$ reaction) and a cross section higher by many orders of magnitudes
- With BGO poor resolution the ROI for $^{17}\text{O}(p,\gamma)^{18}\text{F}$ reaction is 5200-6200 keV

No way to distinguish/resolve the p+D and the $^{17}O(p,\gamma)^{18}F$ sum peak

Never give up and be smart!

Ok looking at the sum peak we cannot tell a difference between our signal and BIB signal but is there any difference?

Sure, check NNDC (https://www.nndc.bnl.gov/):


E(level) (keV)	E(y) (keV)	Ι(γ)	Final Leve	els
5672.57 <i>32</i>	2539	28.5 20	3133.87	1-
	2611	4.0 4	3061.84	2+
	3572	0.4 2	2100.61	2-
	3972	0.8 3	1700.81	1+
	4592	52 3	1080.54	0-
	4631	8.1 7	1041.55	0+
	5673	6.2 4	0.0	1+

...while the p+D give rise to single γ -rays of E γ ~ 5560 keV

This is a not trivial difference

- As well as you can construct the sum peak you can also deconstruct it
- Gating in the ROI and looking at which γ -rays contributed to the sum peak
- You consider only coincident γ -rays corresponding to the $^{17}\text{O}(p,\gamma)^{18}\text{F}$ cascade

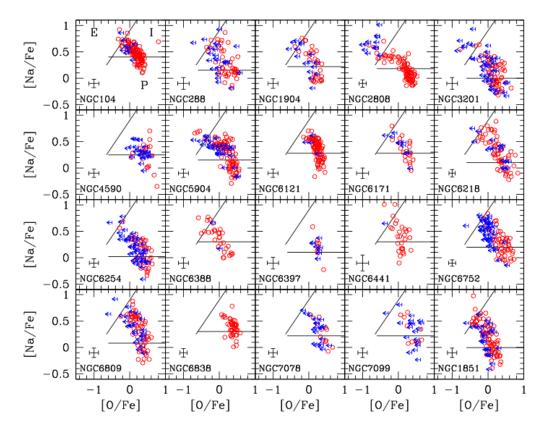
Coming soon!

Two proposals submitted for:

LUNA400kV

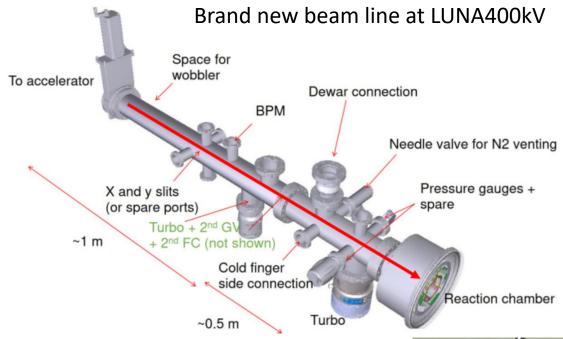
- ¹⁴N(p,γ)¹⁵O
- 23 Na(p, α) 20 Ne
- $^{27}Al(p,\alpha)^{24}Mg$
- 19 F(p, $\alpha_{0,1,2,3,4}$) 16 O
- ¹⁹F(p,γ)²⁰Ne
- ²⁴Mg(p,γ)²⁵Al
- ..

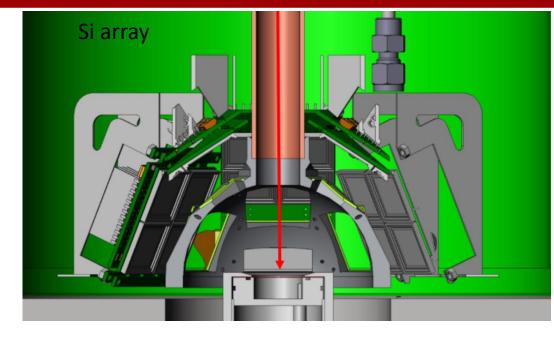
3.5MV accelerator at BIBF:


- ¹⁴N(p,γ)¹⁵O
- 22 Ne(α ,n) 25,26 Mg
- 12C+12C
- ...

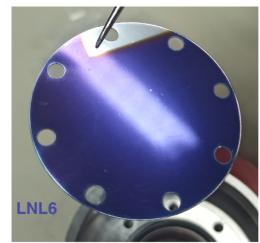
²³Na(p, α)²⁰Ne – Why?

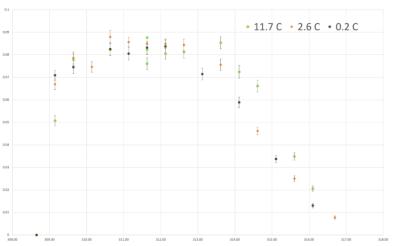
- The measurement of 23 Na(p, α) 20 Ne is one of the last piece of information to understand the Globular Cluster Anomalies
- Main sources of uncertainty are poorly constrained resonances, which fall inside the energy of interest (corresponding to T = 0.05-0.1 GK typical of HBB in AGB stars)


$E_{ m r}$ [keV]	J^π	$\omega\gamma$ [eV]
37	0+	$< 3.3 \times 10^{-20}$
138	? (l_{p} =o)	$< 1.6 \times 10^{-6}$
	? ($l_{\rm p}$ =1)	$< 7.5 \times 10^{-8}$
	? (l _p =2)	$< 2.8 \times 10^{-9}$
	? (l _p =3)	$< 5.4 \times 10^{-11}$
167	$(6,7,8)^+$? (negligible)
170	1_	$(23 \pm 5) \times 10^{-3}$

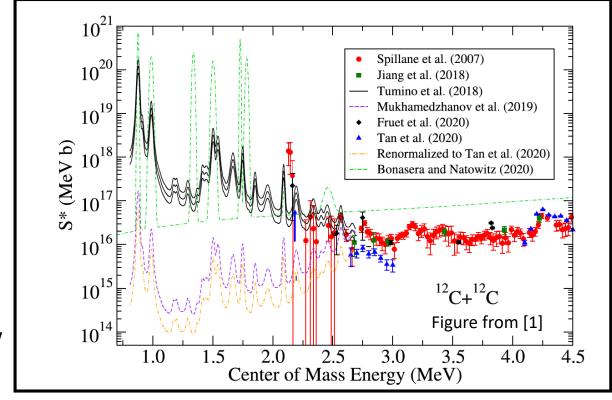


E. Carretta et. al., A&A, 516 (2010)

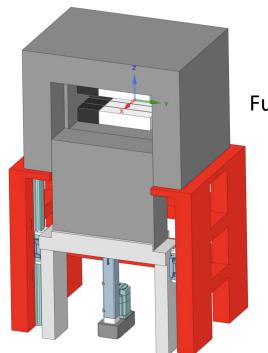


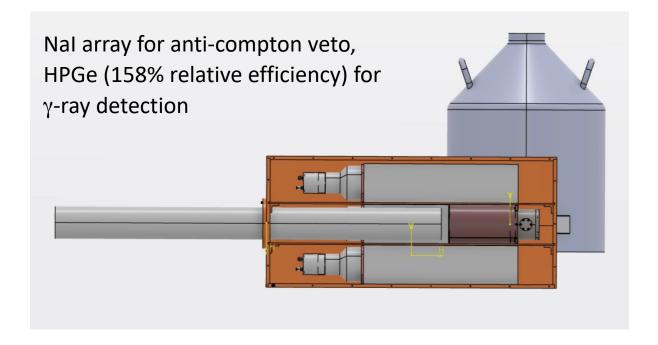

²³Na(p, α)²⁰Ne – How?

New dedicated target, made by sputtering technique, already tested and showed a good profile



12C+12C - Why?


- First burning phase involving heavy ions
- C ignition is possible ONLY for stars with M>M_{up}
- How much is M_{up}? We do not know!
- A star fate is fully determined by 12C+12C reaction rate
- Gamow window = 1.5-2 MeV
- Few direct data available and with large uncertainty
- Recent indirect measurement found many resonances below
 2.5 MeV resulting in a net increase of the reaction rate!
- Need for direct measurements



12C+12C - How?

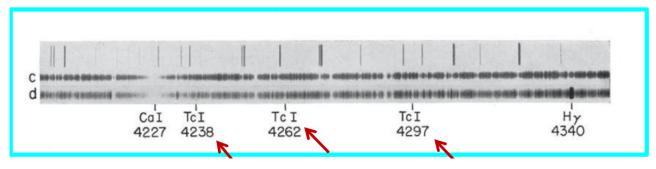
$$\begin{array}{c} ^{12}\text{C} + ^{12}\text{C} \rightarrow ^{20}\text{Ne} + \alpha \underbrace{(+\gamma)}_{\text{C}} (Q = 4.62 \text{ MeV}) \\ \rightarrow ^{23}\text{Na} + p\underbrace{(+\gamma)}_{\text{C}} (Q = 2.24 \text{ MeV}) \end{array} \\ \begin{array}{c} \text{Main exit channels} \\ \text{(experiments are performed detecting charged particles and/or gamma rays)} \end{array}$$

Full Pb+Cu shield setup

Tests on different type of target plans ongoing at Felsenkeller lab.

LUNA Collaboration

- A. Compagnucci*, R. Gesue'*, M. Junker, F. Ferraro | INFN LNGS *and GSSI, Italy
- C. Broggini, A. Caciolli, P. Marigo, R. Menegazzo, D. Piatti, J. Skowronski, S. Turkat | Università di Padova and INFN Padova, Italy
- A. Formicola, C. Gustavino | INFN Roma 1, Italy
- D. Bemmerer, A. Boeltzig, E. Masha | HZDR Dresden, Germany
- L. Csedreki, Z. Elekes, Zs. Fülöp, Gy. Gyürky, T. Szücs | MTA-ATOMKI Debrecen, Hungary
- M. Lugaro | Konkoly Observatory and ELTE University Budapest, Hungary
- O. Straniero | INAF Osservatorio Astronomico di Collurania, Teramo, Italy
- F. Casaburo, P. Corvisiero, P. Prati, S. Zavatarelli | Università di Genova and INFN Genova, Italy
- R. Depalo, A. Guglielmetti | Università di Milano and INFN Milano, Italy
- C. Ananna, A. Best, D. Dell'Aquila, A. Di Leva, D. Mercogliano, G. Imbriani, D. Rapagnani | Università di Napoli and INFN Napoli, Italy
- F. Cavanna, P. Colombetti, G. Gervino | Università di Torino and INFN Torino, Italy
- M. Aliotta, L. Barbieri, C. Bruno, T. Davinson, J. Marsh, D. Robb, R. Sidhu, | University of Edinburgh, United Kingdom
- F. Barile, G. Ciani, V. Paticchio, L. Schiavulli | Università di Bari and INFN Bari, Italy
- R. Perrino | INFN Lecce, Italy


"The amazing thing is that every atom in your body came from a star that exploded. And, the atoms in your left hand probably came from a different star than your right hand. It really is the most poetic thing I know about physics: You are all stardust."

L.M.Krauss

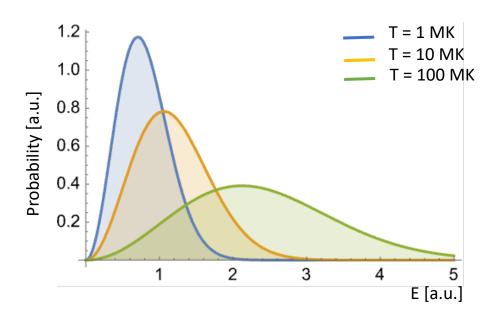
Thank you for your attention

Backup

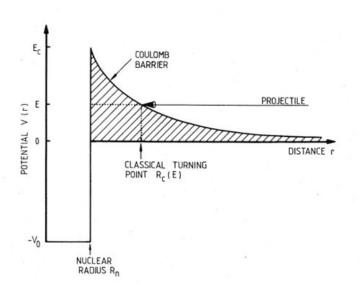
1952: the first evidence

Tc absorption line in red giant R Andromeda

Ident.	Wave Length
ABSORI	PTION
ZrO	4471, 4620, 4638
TiO	4584, 4626, 4761, 4955
Ba 11	4554, 4934
Low-temp.:	,
Al I	3944, 3961
K 1	4044, 4047
Ca 1	4226
Cr 1	4254, 4274, 4289
Sr I	4607
Tc I	4031, 4238, 4262, 4297

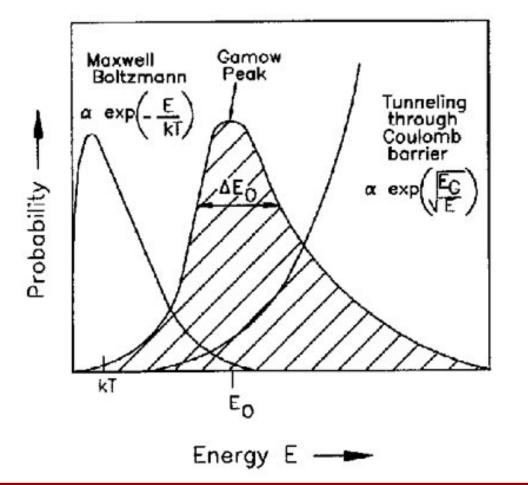

Merrill P., ApJ 116, 21 (1952)

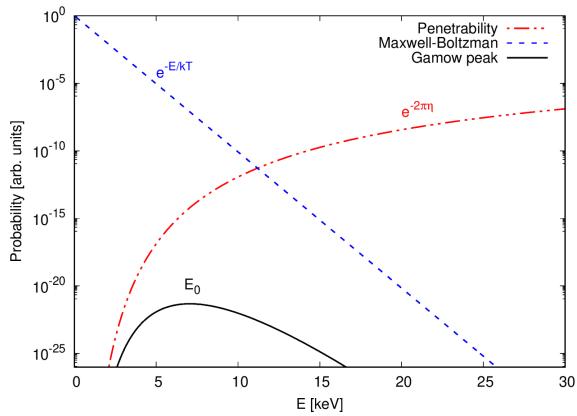
 99 Tc is a radioisotope with $T_{1/2}$ = 2.1E+05 y << 10 9 years corresponding to the star age

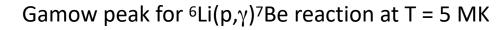

Honestly sir, you are a foul!

Ions energy distribution in stars is a Maxwell-Boltzman (~ exp(-E/kT):

Particles most frequently have energy around E $^{\sim}$ kT: In the Sun E $^{\sim}$ 100 eV, in more advanced stars $^{\sim}$ few keV to few MeV

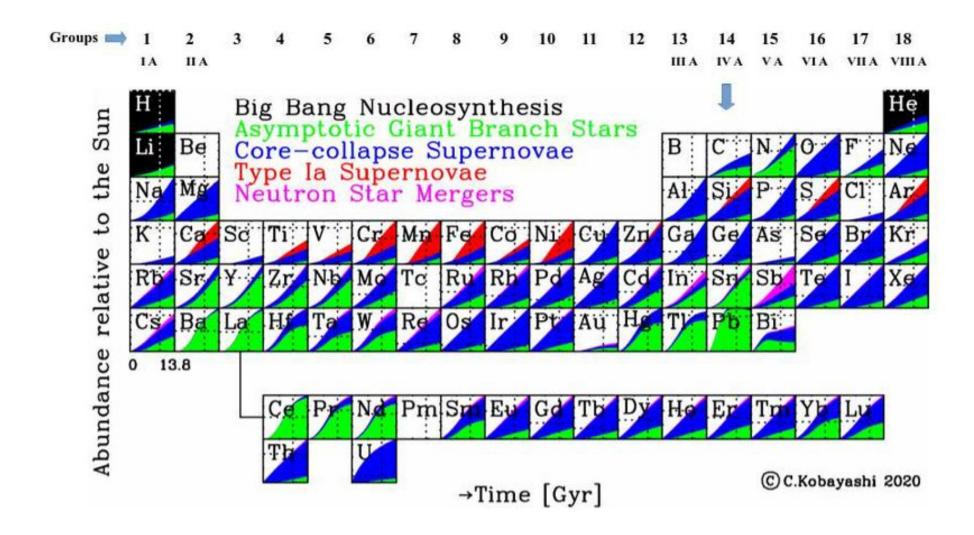

Most of the ions have energy well below the coulomb barrier (= the repulsion between charge particle)



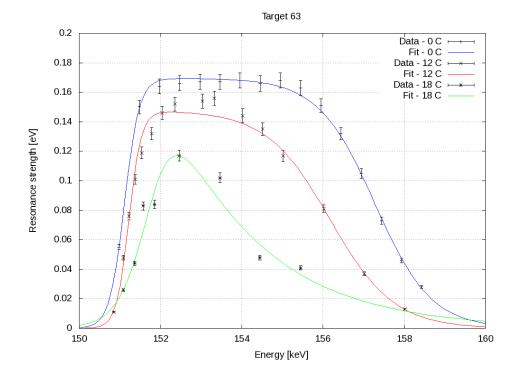


Ops, sorry sir you were right!

Gamow's work on quantum tunneling effect which pointed to a non-negligible probability, inside a pretty small window, that charge particle induced reactions take place inside stellar core



Where we are now?

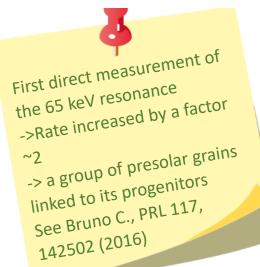

What can we do?

• Can we have thicker and thicker target? Not really.

The beam is losing energy while passing through the target then reactions take place at different beam energies and so we cannot recover which events correspond to a particular energy!

No gain

- Could we have higher and higher intensity beams? Not really because of the risk of target degradation!
- Detector as big as we want?
 Not really. If you need high resolution you will go for an HPGe and crystal size are still limited. With scintillators you have more options but intrinsic background and bad resolution can limit you!



Some notes on recent successful campaigns

 $\sigma(E)$ measured at 3% precision level -> BBN Ω_b h² estimate at 1.6% level See Mossa V., Nature 587, 210 (2020)

Reaction	Accelerator	Astrophysical Motivation/Scenario
$D(\alpha,\gamma)^6$ Li; 3 He $(\alpha,\gamma)^7$ Be $D(p,\gamma)^3$ He	LUNA400kV	Big Bang Nucleosynthesis (BBN), Lithium problem(s)
³ He+ ³ He; D(p,γ) ³ He	LUNA50kV	pp-chain and Solar neutrinos
⁶ Li(p,γ) ⁷ Be	LUNA400kV	Stars, cosmic-ray spallation and BBN; Resonance NOT confirmed
^{12,13} C(p,γ) ^{13,14} N	LUNA400kV	CNO cycle kick off reactions; only few, poorly constrained data
14,15N(p,γ)15,16O	LUNA400kV	CNO cycle bottleneck;
^{17,18} O(p,α) ^{14,15} N	LUNA400kV	CNO cycle; crucial for oxygen isotopic abundance in AGB stars
^{16,17,18} O(p,γ) ^{17,18,19} F	LUNA400kV	CNO cycle and CNO leak
^{20,21,22} Ne(p,γ) ^{21,22,23} Na	LUNA400kV	NeNa cycle; affecting abundances up to P
²³ Na(p,γ) ²⁴ Mg	LUNA400kV	NeNa-MgAl cycle link
25 Mg(p, γ) 26 Al	LUNA400kV	MgAl cycle; poorly constrained resonances dominate the rate
13 C(α ,n) 16 O, 22 Ne(α , γ) 26 Mg	LUNA400kV	s-process crucial for isotopes heavier than iron

Some notes on recent successful campaigns

σ(E) down to 60 keV,
lowest energy to date.
Offset of 25 and 30%
w.r.t. literature
-> improved ½C/½C ratio
See Skowronski J., PRL
131, 162701 (2023)

σ(E) measured very close to s-process Gamow peak See Ciani G.F., PRL 127, 152701 (2021)

Reaction	Accelerator	Astrophysical Motivation/Scenario
$D(\alpha,\gamma)^6$ Li; 3 He $(\alpha,\gamma)^7$ Be; $D(p,\gamma)^3$ He	LUNA400kV	Big Bang Nucleosynthesis (BBN), Lithium problem(s)
³He+³He; D(p,γ)³He	LUNA50kV	pp-chain and Solar neutrinos
⁶ Li(p,γ) ⁷ Be	LUNA400kV	Stars, cosmic-ray spallation and BBN; Resonance NOT confirmed
^{12,13} C(p,γ) ^{13,14} N	LUNA400kV	CNO cycle kick off reactions; only few, poorly constrained data
14,15 N(p,γ) 15,16 O	LUNA400kV	CNO cycle bottleneck;
$^{17,18}\text{O}(\text{p,}\alpha)^{14,15}\text{N}$	LUNA400kV	CNC e; crucial for oxygen isotopic abundance in AGB stars
16,17,18 Ο(p,γ) 17,18,19 F	LUNA	and CNO leak
^{20,21} , ²² Ne(p,γ) ^{21,22,23} Na	the first time. DC compone	of down to P
²³ Na(p,γ) ²⁴ Mg	the mpon	1000 of No le link
²⁵ Mg(p,γ) ²⁶ Al	LL lowest ve k	y constrained resonances dominate the rate raro.F., PRL 121, raro.F., raro.
$^{13}\text{C}(\alpha,\text{n})^{16}\text{O})^{22}\text{Ne}(\alpha,\gamma)^{26}\text{Mg}$	LUN O anti co	y constrained resonances dominate the rate prelation in Original for isotopes heavier than iron
	1210	11/2

