Theory of strong-interaction matter

Gergely Endrődi

University of Bielefeld

DPG Spring Meeting Gießen, March 13, 2024

Theory of strong-interaction matter

Gergely Endrődi

in collaboration with:

Bielefeld: Bastian Brandt, Eduardo Garnacho, Javier Hernández, Gergely Markó, Laurin Pannullo, Leon Sandbote, Dean Valois

Frankfurt, Darmstadt: crc-tr211.org

my colleagues from Budapest, Regensburg, Wuppertal, Graz, Nicosia, Mumbai, Seattle, Sao Paulo, Tuscaloosa

Appetizer

fundamental phase diagrams of QCD with possible phenomenological implications

Endrődi '15

D'Elia, Maio, Sanfilippo, Stanzione '21

Outline

introduction: strongly interacting matter in

- strong electromagnetic fields
- nonzero isospin density
- lattice simulation techniques
- phase diagrams: current status
- ► application: cosmic trajectory
- further electromagnetic effects: inhomogeneities, topology and chirality

Introduction

Strong interactions

explain 99.9% of visible matter in the Universe

elementary particles: quarks and gluons

• elementary fields: $\psi(x)$ and $A_{\mu}(x)$ enter the QCD Lagrangian

$$\mathcal{L}_{ ext{QCD}} = rac{1}{4} \operatorname{Tr} F_{\mu
u}(\mathbf{g}_{s}, A)^{2} + ar{\psi}[\gamma_{\mu}(\partial_{\mu} + i \mathbf{g}_{s} A_{\mu}) + m]\psi$$

► $g_s = O(1) \rightsquigarrow \text{confinement}$ $m_u, m_d \approx 3 - 5 \text{ MeV}, \quad m_p = 938 \text{ MeV}$

asymptotic freedom at high energy scales ~> deconfinement

▶ heavy ion collisions $T \lesssim 10^{12} \, {}^\circ C = 200$ MeV, $n \lesssim 0.12$ fm⁻³ $B \lesssim 10^{19}$ G = 0.3 GeV²/e

▶ heavy ion collisions $T \lesssim 10^{12}$ °C = 200 MeV, $n \lesssim 0.12$ fm⁻³ $B \lesssim 10^{19}$ G = 0.3 GeV²/e

neutron stars
$$T \lesssim 1$$
 keV, $n \lesssim 2$ fm⁻³
 magnetars $B \lesssim 10^{15}$ G

Lattimer, Nature Astronomy 2019

▶ heavy ion collisions $T \lesssim 10^{12} \,^{\circ}C = 200$ MeV, $n \lesssim 0.12$ fm⁻³ $B \lesssim 10^{19}$ G = 0.3 GeV²/e

neutron stars
$$T \lesssim 1$$
 keV, $n \lesssim 2$ fm⁻³
 magnetars $B \lesssim 10^{15}$ G

▶ neutron star mergers $T \lesssim 50$ MeV

▶ heavy ion collisions $T \lesssim 10^{12} \, {}^\circ C = 200$ MeV, $n \lesssim 0.12$ fm⁻³ $B \lesssim 10^{19}$ G = 0.3 GeV²/e

neutron stars
$$T \lesssim 1$$
 keV, $n \lesssim 2$ fm⁻³
 magnetars $B \lesssim 10^{15}$ G

- \blacktriangleright neutron star mergers $T \lesssim 50$ MeV
- ▶ eary universe, QCD epoch $T \leq 200$ MeV standard scenario: $n \approx 0$

Major experimental and observational campaigns

Major experimental and observational campaigns

Major experimental and observational campaigns

QCD phase diagram(s)

▶ control parameters: *T*, *n* $\leftrightarrow \mu$, *B* $\mu_{\{u,d,s\}} / \mu_{\{B,Q,S\}} / \mu_{\{B,I,S\}}$

▶ control parameters: *T*, $n \leftrightarrow \mu$, *B*

$$\mu_{\{u,d,s\}} / \mu_{\{B,Q,S\}} / \mu_{\{B,I,S\}}$$

well-known famous phase diagram

- ▶ control parameters: *T*, *n* \leftrightarrow μ , *B* $\mu_{\{u,d,s\}} / \mu_{\{B,Q,S\}} / \mu_{\{B,I,S\}}$
- well-known famous phase diagram
- well-known, less famous phase diagram:

- ► control parameters: T, $n \leftrightarrow \mu$, B $\mu_{\{u,d,s\}} / \mu_{\{B,Q,S\}} / \mu_{\{B,I,S\}}$
- well-known famous phase diagram
- well-known, less famous phase diagram: T B

- ► control parameters: T, $n \leftrightarrow \mu$, B $\mu_{\{u,d,s\}} / \mu_{\{B,Q,S\}} / \mu_{\{B,I,S\}}$
- well-known famous phase diagram
- well-known, less famous phase diagram: T B

- ▶ control parameters: *T*, *n* $\leftrightarrow \mu$, *B* $\mu_{\{u,d,s\}} / \mu_{\{B,Q,S\}} / \mu_{\{B,I,S\}}$
- well-known famous phase diagram
- well-known, less famous phase diagram: T B

- ▶ control parameters: *T*, *n* \leftrightarrow μ , *B* $\mu_{\{u,d,s\}} / \mu_{\{B,Q,S\}} / \mu_{\{B,I,S\}}$
- well-known famous phase diagram
- well-known, less famous phase diagram:

- ► control parameters: *T*, $n \leftrightarrow \mu$, *B* $\mu_{\{u,d,s\}} / \mu_{\{B,Q,S\}} / \mu_{\{B,I,S\}}$
- well-known famous phase diagram
- well-known, less famous phase diagram: $T \mu_I$

- ► control parameters: *T*, $n \leftrightarrow \mu$, *B* $\mu_{\{u,d,s\}} / \mu_{\{B,Q,S\}} / \mu_{\{B,I,S\}}$
- well-known famous phase diagram
- well-known, less famous phase diagram: $T \mu_I$

- ► control parameters: *T*, $n \leftrightarrow \mu$, *B* $\mu_{\{u,d,s\}} / \mu_{\{B,Q,S\}} / \mu_{\{B,I,S\}}$
- well-known famous phase diagram
- well-known, less famous phase diagram: $T \mu_I$

- ► control parameters: *T*, $n \leftrightarrow \mu$, *B* $\mu_{\{u,d,s\}} / \mu_{\{B,Q,S\}} / \mu_{\{B,I,S\}}$
- well-known famous phase diagram
- well-known, less famous phase diagram: $T \mu_I$

Lattice QCD simulations

Lattice simulations

▶ path integral 🖉 Feynman '48

$$\mathcal{Z} = \int \mathcal{D} \mathsf{A}_{\mu} \, \mathcal{D} ar{\psi} \, \mathcal{D} \psi \, \exp \Big(- \int \mathsf{d}^4 x \, \mathcal{L}_{ ext{QCD}}(x) \Big)$$

discretize QCD action on space-time lattice & Wilson '74

continuum limit a
ightarrow 0 in a fixed physical volume: $N
ightarrow \infty$

▶ dimensionality of lattice path integral: $10^{9-10} \rightsquigarrow$ computationally very demanding

SuperMUC-NG

nvidia.com

amd.com

Monte Carlo simulations

Euclidean QCD path integral over gauge field A

$$\mathcal{Z} = \int \mathcal{D}\mathcal{A} \ e^{-\mathcal{S}_g[\mathcal{A}]} \ \mathsf{det}[
ot\!\!/ [\mathcal{A}] + m]$$

Monte-Carlo simulations need: det[∅ + m] ∈ ℝ⁺ for that one needs Γ so that

$$\Gamma
ot\!\!\!/ \, \Gamma^\dagger = {ot\!\!\!\!/}^\dagger, \quad \Gamma^\dagger \Gamma = 1$$

 $\det[\not\!\!D+m] = \det[\Gamma^{\dagger}\Gamma(\not\!\!D+m)] = \det[\Gamma(\not\!\!D+m)\Gamma^{\dagger}] = \det[\not\!\!D^{\dagger}+m] = \det[\not\!\!D+m]^{*}$

- usually positivity can also be shown
- ▶ such a Γ exists: *B*, μ_I , $i\mu_B$, $iE \checkmark$
- ▶ no Γ exists: complex action problem $μ_B$, E ≠

Phase diagram: nonzero isospin

Pion condensation

• isospin chemical potential: $\mu_{\mu} = \mu_{I}, \ \mu_{d} = -\mu_{I}, \ \mu_{s} = 0$

- ▶ QCD at low energies \approx pions chiral perturbation theory
- ▶ charged pion chemical potential: $\mu_{\pi} = 2\mu_{I}$

at zero temperature $\mu_\pi < m_\pi$ vacuum state $\mu_{\pi} > m_{\pi}$ Bose-Einstein condensation

Son. Stephanov '00

Pion condensation

• isospin chemical potential: $\mu_{\mu} = \mu_{I}, \ \mu_{d} = -\mu_{I}, \ \mu_{s} = 0$

- ▶ QCD at low energies \approx pions chiral perturbation theory
- ▶ charged pion chemical potential: $\mu_{\pi} = 2\mu_{I}$

at zero temperature $\mu_{\pi} < m_{\pi}$ vacuum state $\mu_{\pi} > m_{\pi}$ Bose-Einstein condensation

trapped Rb atoms at low temperature & Anderson et al '95 JILA-NIST/University of Colorado

Condensation of states

singular values of the Dirac operator & Kanazawa, Wettig, Yamamoto '11

 $(\not D + m)^{\dagger}(\not D + m)\chi = \xi^2 \chi$

▶ pion condensate via Banks-Casher-type relation @ Brandt, Endrődi, Schmalzbauer '17

$$\Sigma_\pi \propto \langle
ho(\xi=0)
angle$$

Order of the transition

volume scaling of order parameter shows typical sharpening

▶ collapse according to O(2) critical exponents \mathscr{P} Ejiri et al '09

Order of the transition

volume scaling of order parameter shows typical sharpening

- collapse according to O(2) critical exponents \mathscr{P} Ejiri et al '09
- ► indications for a second order phase transition at $\mu_I = m_{\pi}/2$, in the O(2) universality class

phases in the *T* - μ_I phase diagram: hadronic (confined), quark-gluon plasma (deconfined), pion condensation (confined)

Parandt, Endrődi, Schmalzbauer '17
Parandt, Endrődi '19

phases in the *T* - μ_I phase diagram: hadronic (confined), quark-gluon plasma (deconfined), pion condensation (confined), BCS (deconfined)

🖉 Brandt, Endrődi, Schmalzbauer '17 🛛 🖉 Brandt, Endrődi '19

Phase diagram

 phases in the *T* - μ_I phase diagram: hadronic (confined), quark-gluon plasma (deconfined), pion condensation (confined), BCS (deconfined)

Parandt, Endrődi, Schmalzbauer '17 Prandt, Endrődi '19

12 / 29

Equation of state: nonzero isospin

Equation of state

equilibrium description of matter

 $\epsilon(p)$

relevant for:

- neutron star physics (TOV equations)
- cosmology, evolution of early Universe (Friedmann equation)
- heavy-ion collision phenomenology (charge fluctuations)

thermodynamic relations

$$p = \frac{T}{V} \log \mathcal{Z}, \qquad s = \frac{\partial p}{\partial T}, \qquad n_I = \frac{\partial p}{\partial \mu_I}, \qquad \epsilon = -p + Ts + \mu_I n_I$$
$$I = \epsilon - 3p, \qquad c_s^2 = \left. \frac{\partial p}{\partial \epsilon} \right|_{s/n_I}$$

integral method to calculate differences

$$n_{I} = \frac{T}{V} \frac{\partial \log \mathcal{Z}}{\partial \mu_{I}}, \qquad p(T, \mu_{I}) - p(T, 0) = \int_{0}^{\mu_{I}} \mathrm{d}\mu_{I}' n_{I}(\mu_{I}')$$

integral method to calculate differences

$$n_{I} = \frac{T}{V} \frac{\partial \log \mathcal{Z}}{\partial \mu_{I}}, \qquad p(T, \mu_{I}) - p(T, 0) = \int_{0}^{\mu_{I}} \mathrm{d}\mu_{I}' n_{I}(\mu_{I}')$$

pressure and energy density

& Brandt, Endrődi, Fraga, Hippert, Schaffner-Bielich, Schmalzbauer '18

integral method to calculate differences

$$n_{I} = \frac{T}{V} \frac{\partial \log \mathcal{Z}}{\partial \mu_{I}}, \qquad p(T, \mu_{I}) - p(T, 0) = \int_{0}^{\mu_{I}} \mathrm{d}\mu_{I}' n_{I}(\mu_{I}')$$

pressure and energy density

🖉 Brandt, Endrődi, Fraga, Hippert, Schaffner-Bielich, Schmalzbauer '18

interaction measure and speed of sound

Brandt, Cuteri, Endrődi '22

integral method to calculate differences

$$n_{I} = \frac{T}{V} \frac{\partial \log \mathcal{Z}}{\partial \mu_{I}}, \qquad p(T, \mu_{I}) - p(T, 0) = \int_{0}^{\mu_{I}} \mathrm{d}\mu_{I}' n_{I}(\mu_{I}')$$

pressure and energy density

Brandt, Endrödi, Fraga, Hippert, Schaffner-Bielich, Schmalzbauer '18

interaction measure and speed of sound

🖉 Brandt, Cuteri, Endrődi '22 Abbott et al. '23

0.8

0.9

Equation of state on the lattice: T > 0

nonzero temperature results & Brandt, Cuteri, Endrődi '22
 Vovchenko, Brandt, Cuteri, Endrődi, Hajkarim, Schaffner-Bielich '20

- ▶ interaction measure negative at high μ_I , low T
- ▶ speed of sound above $1/\sqrt{3}$ at high μ_I and intermediate T

EoS can get very stiff inside pion condensation phase

Equation of state on the lattice: T > 0

nonzero temperature results & Brandt, Cuteri, Endrődi '22
 Vovchenko, Brandt, Cuteri, Endrődi, Hajkarim, Schaffner-Bielich '20

- ▶ interaction measure negative at high μ_I , low T
- ▶ speed of sound above $1/\sqrt{3}$ at high μ_I and intermediate T

EoS can get very stiff inside pion condensation phase
 comparison: χPT, models *d* Adhikari et al. '21 *d* Avancini et al. '19

Speed of sound

'supersonic' region of pion condensate

▶ first time that $c_s > 1/\sqrt{3}$ found in a first-principles lattice QCD calculation

Speed of sound

- 'supersonic' region of pion condensate
- ▶ first time that $c_s > 1/\sqrt{3}$ found in a first-principles lattice QCD calculation
- ▶ relevance of c_s for neutron star modeling \mathscr{P} Annala et al. '19

Speed of sound

- 'supersonic' region of pion condensate
- ▶ first time that $c_s > 1/\sqrt{3}$ found in a first-principles lattice QCD calculation
- ▶ relevance of c_s for neutron star modeling P Annala et al. '19

▶ c_s at $\mu_B > 0$ from FRG and χ EFT ~a Braun, Schallmo '22 ~a Leonhardt et al. '20

Cosmological implications

Cosmic trajectories

early Universe

conservation equations for isentropic expansion

$$rac{n_B}{s}=b, \quad rac{n_Q}{s}=0, \quad rac{n_{L_{lpha}}}{s}=l_{lpha} \quad (lpha\in\{e,\mu,\tau\})$$

▶ parameters: T, μ_B , μ_Q , $\mu_{L_{\alpha}}$

experimental constraints & Planck collaboration '15 & Oldengott, Schwarz '17

$$b = (8.60 \pm 0.06) \cdot 10^{-11}, \qquad |l_e + l_\mu + l_\tau| < 0.012$$

(the individual I_{lpha} may have opposite signs)

▶ $n_Q = 0$ with $l_e > 0$ allows equilibrium of e^- , ν_e , $\pi^+ ~ ?$ Abuki, Brauner, Warringa '09

Cosmic trajectories

cosmic trajectory T(μ_Q) is solved for
 standard scenario (l_α = 0): μ_Q = 0 for all T

Cosmic trajectories

• cosmic trajectory $T(\mu_Q)$ is solved for

▶ standard scenario ($I_{\alpha} = 0$): $\mu_Q = 0$ for all T

cosmic trajectory enters BEC phase for lepton asymmetries allowed by observations & Vovchenko, Brandt, Cuteri, Endrődi, Hajkarim, Schaffner-Bielich '20

condition for pion condensation to occur:

$$|I_e + I_\mu + I_\tau| < 0.012$$
 $|I_e + I_\mu| \gtrsim 0.1$

Signatures of the condensed phase

► relic density of primordial gravitational waves is enhanced with respect to amplitude at $l_e + l_\mu = 0$

🖉 Vovchenko, Brandt, Cuteri, Endrődi, Hajkarim, Schaffner-Bielich '20

to be detected experimentally (SKA)

Phase diagram: magnetic fields

Magnetic phase diagram

QCD crossover temperature in the phase diagram

Bali, Bruckmann, Endrődi, Fodor, Katz et al. '11 2 '12 Pendrődi '15

 T_c is reduced by B contrary to almost all effective theories and low-energy models of QCD
 Andersen, Naylor, Tranberg '14

Magnetic phase diagram and critical point

- ► effective theory of QCD at $B \to \infty$: first-order deconfinement transition \Rightarrow critical point! \checkmark Miransky, Shovkovy '02
- ▶ location of critical point based on extrapolation from $0 < eB \lesssim 3 \text{ GeV}^2$ ⇒ $eB_c \approx 10(2) \text{ GeV}^2 \quad \mathscr{P} \text{ Endrődi '15}$

Magnetic phase diagram and critical point

- ▶ effective theory of QCD at $B \rightarrow \infty$: first-order deconfinement transition ⇒ critical point! \mathscr{P} Miransky, Shovkovy '02
- ▶ location of critical point based on extrapolation from $0 < eB \lesssim 3 \text{ GeV}^2$ ⇒ $eB_c \approx 10(2) \text{ GeV}^2 \quad \mathscr{P} \text{ Endrődi '15}$

Magnetic phase diagram and critical point

- ▶ location of critical point based on extrapolation from $0 < eB \lesssim 3 \text{ GeV}^2$ ⇒ $eB_c \approx 10(2) \text{ GeV}^2 \quad \mathscr{P} \text{ Endrődi '15}$
- ▶ simulating up to $eB \approx 9 \text{ GeV}^2$ ⇒ 4 GeV² < $eB_c < 9 \text{ GeV}^2$ \mathscr{P} D'Elia, Maio, Sanfilippo, Stanzione '21

Beyond constant magnetic fields: inhomogeneities

▶ off-central heavy-ion collisions: inhomogeneous magnetic fields *P* Deng et al. '12

▶ off-central heavy-ion collisions: inhomogeneous magnetic fields *P* Deng et al. '12

• consider profile $B(x) = B \cosh^{-2}(x/\epsilon)$ 2 Dunne '04

▶ off-central heavy-ion collisions: inhomogeneous magnetic fields @ Deng et al. '12

• consider profile $B(x) = B \cosh^{-2}(x/\epsilon)$ 2 Dunne '04

impact: condensate, Polyakov loop & Brandt, Cuteri, Endrődi, Markó, Sandbote, Valois '23

▶ off-central heavy-ion collisions: inhomogeneous magnetic fields @ Deng et al. '12

• consider profile $B(x) = B \cosh^{-2}(x/\epsilon)$ 2 Dunne '04

▶ impact: electric current 🖉 Valois et al. upcoming 🛛 🔍 D. Valois Tue 16:00 HK21.2

Magnetic fields and chiral imbalance: anomalous transport

Anomalous transport

 usual transport: vector current due to electric field

$$\langle \vec{J}
angle = \sigma \cdot \vec{E}$$

chiral magnetic effect (CME): Fukushima, Kharzeev, Warringa '08 vector current due to chirality and magnetic field

$$\langle \vec{J} \rangle = \sigma_{\rm CME} \cdot \vec{B}$$

 chiral separation effect (CSE): axial current due to baryon number and magnetic field

$$\langle \vec{J_5} \rangle = \sigma_{\rm CSE} \cdot \vec{B}$$

probe CP-odd domains in heavy-ion collisions & Kharzeev, Liao, Voloshin, Wang '16
 experimental searches for CME and related observables & STAR collaboration '21

General (handwaving) argument

spin, momentum CME

General (handwaving) argument

spin, momentum CSE

CME and CSE from lattice QCD

 first determination of in-equilibrium CME/CSE coefficients with continuum extrapolated lattice simulations

CSE: Prandt, Endrődi, Garnacho, Markó, '23

CME: & Brandt, Endrődi, Garnacho, Markó, upcoming

clarifying contradictory results in the literature Q E. Garnacho Tue 15:45 HK21.1

CME and CSE from lattice QCD

 first determination of in-equilibrium CME/CSE coefficients with continuum extrapolated lattice simulations

CSE: Prandt, Endrődi, Garnacho, Markó, '23

CME: & Brandt, Endrődi, Garnacho, Markó, upcoming

clarifying contradictory results in the literature Q E. Garnacho Tue 15:45 HK21.1
 non-trivial response in inhomogeneous field B(x) Q D. Valois Tue 16:00 HK21.2

CME and CSE from lattice QCD

 first determination of in-equilibrium CME/CSE coefficients with continuum extrapolated lattice simulations

CSE: Prandt, Endrődi, Garnacho, Markó, '23

CME: & Brandt, Endrődi, Garnacho, Markó, upcoming

clarifying contradictory results in the literature Q E. Garnacho Tue 15:45 HK21.1
 non-trivial response in inhomogeneous field B(x) Q D. Valois Tue 16:00 HK21.2
 this is not the **out-of-equilibrium** effect

Magnetic and electric fields: axion-photon coupling

Axions as dark matter

 is a possible dark matter candidate
 extensive experimental campaign: haloscopes and helioscopes & CAST & ADMX & XENON1T

Axion-photon coupling

- most relevant parameter for experimental detection
- direct coupling (model-dependent) plus

indirect coupling through quark/gluon loops

 chiral perturbation theory predicts two terms of similar magnitude and opposite sign di Cortona et al. '16

QCD contribution, for slowly varying a fields

$$g^{\rm QCD}_{a\gamma\gamma} = \frac{\partial^2 \log \mathcal{Z}}{\partial a \, \partial (\mathbf{E} \cdot \mathbf{B})} = \frac{\partial \langle Q_{\rm top} \rangle}{\partial (i\mathbf{E} \cdot \mathbf{B})}$$

Axion-photon coupling on the lattice

QCD contribution

$$g_{a\gamma\gamma}^{
m QCD} = rac{\partial \langle Q_{
m top}
angle}{\partial (i {f E} \cdot {f B})}$$

shift in mean topology by parallel magnetic and imaginary electric fields

First results for $g_{a\gamma\gamma}^{
m QCD}$? Brandt, Cuteri, Endrődi, Hernández, Markó '22

► challenging to approach continuum limit Q J.Hernández Wed 17:45 HK48.2

Summary

- $T \mu_I$ phase diagram and pion condensation
- cosmic trajectory may enter pion condensed phase

- T B phase diagram and the critical point
- in-equilibrium anomalous transport phenomena from lattice QCD

T [MeV]