Strong Interactions under Extreme Conditions: a Review

Guy D. Moore, for the SFB-TR 211

Technische Universität Darmstadt

TECHNISCHE UNIVERSITÄT DARMSTADT

- Motivation to study QCD under extreme conditions
- What we know already and how we know it
- What we do and don't know: Equation of State
- What we do and don't know: Dynamics
- Areas of active research

QCD is theory to describe protons+neutrons and other *hadrons* in terms of their constituents, *quarks and gluons*.

We know degrees of freedom and the Lagrangian

$$\mathcal{L} = \frac{1}{2g_s^2} \operatorname{Tr} G_{\mu\nu} G^{\mu\nu} + \sum_{i=udscbt} \overline{\psi}_i (\not\!\!D + m_i) \psi_i$$

We know the (scale-dependent) parameters g_s^2 and m_{udscbt} accurately We know the *bound-state spectrum* $(\pi, K, \eta, \rho, p, n, \Delta, ...)$ from both experiment and theory

We know the *high-energy behavior* (jets and their properties) from a mix of experiment and theory

Few-body scattering at intermediate energies (Experiments: $pp, pD \rightarrow pn, p\pi, pK$, but not $\pi\pi, KK, ...$) large coupling, difficult for first-principles tools like lattice QCD

Many-body physics and collective dynamics

- Equilibrium: Equation of state $P(T, \mu_B, \mu_I, \mu_S)$
- Nonequilibrium: dynamics of large assemblages of QCD matter with lots of energy
 - Heavy ion collisions
 - Neutron star mergers
 - Early Universe

I will concentrate on these questions

Collide (largest available) nuclei together at (largest available) high energy

Some complex dynamics lead to final-state expanding ball of hadrons.

System gets close to equilibrium!

CRC-TR 211

If system in equilibrium at temp T, chem potential $\mu,$ volume V

- Thermal statistical distribution $1/(\exp((-\mu_i + \sqrt{p^2 + m_i^2})/T) \mp 1)$
- Include unstable particles, but decay them (feeddown)
- Vary T, μ_B, V to fit particle yield data

Works very well. (For pp or e^+e^- it does not.)

Guy Moore, for the SFB-TR 211

Initial geometry

Without re-interactions: final state isotropic.

CRC-TR 211

Strong reinsteraction+fluid behavior:

Pressure contours imply system will "blow out" to the sides.

Coincides with appearance of real events (CMS):

Fluctuations and Triangular Flow

Geometry of collision: Elongated (elliptical) region Random fluctuations: triangular/square/pentagon....

Alver+Roland arxiv.org:1003.0194

Some events clearly display this pattern. Fluctuations in geometry are important. system must be near-equilibrium to turn the geometry into flow in this way.

Makes sense to ask about thermodynamics

Thermodynamics means Phase Diagram + Equation of State. So what do we expect – and what do we know for sure?

First-Principles Theory Tools

What first-principles tools do we have, and where do they work?

Lagrangian from second slide

$$\mathcal{L} = \frac{1}{2g_s^2} \operatorname{Tr} G_{\mu\nu} G^{\mu\nu} + \sum_{i=udscbt} \overline{\psi}_i (\not\!\!D + m_i) \psi_i$$

Use this in the Path Integral

$$Z = e^{-iHt} = \int \mathcal{D}(G_{\mu}, \overline{\psi}, \psi) \, \exp\left(i \int d^4x \, \mathcal{L}\right)$$

Problems: Integral involves phases, phase cancellations Stationary phases works *if* g^2 small. But g^2 is scale-dependent, large at long distances Perturbation theory expands about stationary phases – works if all relevant scales are short distance (large T and/or μ)

For thermodynamics, sufficient to explore

$$Z_{\text{therm}} = e^{-H/T} = \int \mathcal{D}(G_{\mu}, \overline{\psi}, \psi) \, \exp\left(-\int_{0}^{1/T} dt \int d^{3}x \, \mathcal{H}\right)$$

Now integral converges without phases (if $\mu_B = 0$ anyways). Thermodynamic information all still there But information about *dynamics* is now all *indirect*.

But it's one integration variable

- per direction G_{μ} (4)
- per color component G^a_{μ} (4×8)
- ▶ per point in spacetime $G^a_\mu(x)$ $(4 \times 8 \times \infty^4)$

Replace continuous spacetime with finite-volume lattice

Answer = Correct +
$$O(a^2)$$

+ $O(\exp(-m_{\pi}L))$

٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
٠	•	٠	٠	٠	٠	٠	٠	•	•
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
٠	•	٠	٠	٠	٠	٠	٠	•	٠
٠	٠	٠	٠	٠	٠	٠	٠	٠	•
٠	٠	٠	٠	٠	٠	٠	٠	٠	•
٠	٠	٠	٠	٠	٠	٠	٠	٠	•
٠	•	٠	٠	٠	٠	٠	٠	•	•
٠	٠	٠	٠	٠	٠	٠		٠	

Lattice implementation preserves gauge symmetry exactly. Fermions are trickier, but OK in $a \rightarrow 0$ limit. Modern simulations: $\sim 1\%$ statistical + systematic errors for spectrum, thermodynamics $(P, \varepsilon, s, \chi_B, \ldots)$ etc. Dynamics (Scattering, transport, etc) **much** harder....

Old-days of quenched approx. or unphysically heavy quarks are over.

Smooth crossover from hadronic to quark-gluon behavior. Would be sharper if up, down quarks were lighter (right)

CRC-TR 211

Suppose we want finite density? Need chemical potentials μ . Lattice techniques depend on importance-sampling

$$Z(\mu_q) = \int \mathcal{D}G_{\mu} \exp^{-\int d^4x \,\mathcal{H}_{\text{bos.}}} \prod_{q=udsc} \text{Det}\left(\not\!\!\!D + m_q + \mu_q \gamma^0\right)$$

which requires \mathcal{H}_{bos} and Determinant to be real Determinant generally complex for $\mu_i \neq 0$.

Perturb in small μ_q : results up to 6'th order. Sufficient for a "slice" of μ values but not $\mu \gg T$.

Alternative techniques not yet quantitatively reliable at physical m_q .

Perturbation theory: assume propagation dominates interaction do Loop Expansion

Convergence very poor without resummation techniques. With resummations, work for T>350 MeV. "Low" T,n_B ($T<100\,{\rm MeV},\mu\lesssim m_p$): works in terms of (π,n,p)

Functional Renormalization Group: resummation technique which also allows bound states, condensation, collective dynamics .. Also challenging to apply at $\mu_q \gg T$.

What about Dynamics?

Total time scale $\sim 20~{
m fm}$ long compared to inverse-energies $p_{\perp}^{-1} \sim 0.4~{
m fm}$

Series of "epochs" which may need different physics descriptions

- Initial: statistical Glauber, pQCD, Saturation/Colored Glass
- Early dynamics: kinetic theory
- Intermediate times/densities: relativistic viscous Hydro
- Freezeout and hadronic interactions

Local thermal equilibrium: conserved charge densities $(\varepsilon, \vec{\pi}) = T^{\mu 0}, n_B, \rho_e, n_s$ determine everything.

Stress tensor $T^{\mu\nu} = \varepsilon u^{\mu}u^{\nu} + P\eta^{\mu\nu}$, Currents $j^{\mu}_{B.e.s} = n_{B,e,s}u^{\mu}$

Their evolution determined by conservation equations

$$\partial_{\mu}T^{\mu\nu} = 0 \qquad \partial_{\mu}j^{\mu}_{B,e,s} = 0$$

Together with equation of state $P = P(\varepsilon, n_{B,e,s})$, equations close. Near equilibrium, derivative corrections

$$T^{\mu\nu} = T^{\mu\nu}_{\rm eq} - \eta \left(\nabla^{\mu} u^{\nu} + \nabla^{\nu} u^{\mu} - \frac{2}{3} \Delta^{\mu\nu} \nabla \cdot u \right) - \zeta \Delta^{\mu\nu} \nabla \cdot u$$

Nice introduction: Teaney arXiv:0905.2433; Schäfer and Teaney arXiv:0904.3107

Agnostic about Degrees of Freedom. Works for

- weakly-coupled quarks + gluons
- strongly-coupled "stuff" with no particle description
- dense gas of hadrons

provided that mean free path \ll system age. Large systems: this works. (Gold/Lead at RHIC/LHC) Small systems: we'll see how/where it breaks down!

- ► Input required: Stress tensor from initial collision
- ► Output: energy+momentum density ⇒ temperature+flow velocity
- Output: local final anisotropy

Convert into hadrons and feed into final-state scattering model

Initial Conditions

If Hydrodynamics applies at intermediate times, All we need is the initial **Stress Tensor** $T^{\mu\nu}(\text{early})$.

Different models on market, eg, IPGlasma (left), TRENTo (right) Shown: 2D slice of initial energy density, to be fed into hydro See eg Kurkela *et al* arXiv:1805.00961

Which model is "right" (or "best")? Let the data decide.

Early-time dynamics

Early dynamics propagate $T^{\mu\nu}$ a short distance, smoothing initial features... Kurkela *et al* arxiv:1805.01604

Including this dynamics weakens dependence on "thermalization time" which may be $\sim 1.5~{\rm Fermi/c.}$

Old approach: end Hydrodynamics abruptly at "freezeout time" Switch from perfectly-strong scattering to free streaming.

Modern approach: end Hydrodynamics when system is hadronic. Switch to hadronic description but keep tracking hadronic scattering At time of switch, hadronic description approximately hydrodynamic Insensitive to exact time+details of switch

Each phase has unknowns. Roughly

- Initial/early: how much energy density, how clumpy?
- Hydrodynamics: Transport coefficients η, ζ, σ as functions of (T, n_B)
- ► Transition to hadrons: Transition temperature. How $T^{\mu\nu} T^{\mu\nu}_{equil.}$ shared between high/low momentum particles
- Final rescattering: details of hadronic interactions

Accommodated with *fitting parameters* which are varied to reproduce data

Old approach: experts on one aspect would vary fitting parameters in *their* stage of the process, holding other stages fixed. Problem: changing, say, η/s changes best-fit initial energy density. Choices in other stages influence best-fit in practitioner's stage.

Collaboration with expertise in all phases JETSCAPE, or arXiv:2306.08665 Code which interfaces output of one phase to input of the next Fit *all* data while varying *all* parameters in grand-fit Bayesian analysis

Parameter	Symbol	Range
Form width [fm]	u	0.35 - 1.0
Nucleon width [fm]	w	0.35 - 1.0
Constituent number	n_c	2.0 - 20.0
Structure	χ	0.2 - 0.9
Transverse mom. scale	$k_{\mathrm{T,min}}$	0.2 - 0.9
Shape parameter	α	3.0 - 5.0
Shape parameter	β	-0.5 - 1.5
Fireball norm. [GeV]	N ₂₀₀	1.0 - 15.0
$(\sqrt{s_{\rm NN}} = 200 \text{ GeV})$		
Fireball norm. [GeV]	N5020	15.0 - 30.0
$\left(\sqrt{s_{\rm NN}} = 5.02 \text{ TeV}\right)$		
Fluctuation	k	0.1 - 0.6
Flatness	f	1.0 - 2.5
Hydrodyn. time [fm/c]	$\tau_{0, Pb}$	0.1 - 1.5
(Pb-Pb 5.02 TeV)	,	
Hydrodyn. time [fm/c]	$\tau_{0,p}$	0.1 - 1.5
(p-Pb 5.02 TeV)		
Hydrodyn. time [fm/c]	$\tau_{0,Au}$	0.1 - 1.5
(Au-Au 200 GeV)	,	
Hydrodyn. time [fm/c]	$\tau_{0,d}$	0.1 - 1.5
(<i>d</i> -Au 200 GeV)	, ,	
Overall scale	N _{scale}	0.8 - 2.0

Guy Moore, for the SFB-TR 211

Old goal: find η/s of Quark-Gluon Plasma. New goal: find T, μ_B dependence of $\eta/s, \zeta/s$

Shen Schenke Zhao arXiv:2310.10787

Initial collision also produces

- Heavy quarks
- High-energy quarks and gluons \Rightarrow jets

Initial production (mostly) under control based on pp ...

Propagation through medium modifies energy distribution Opportunity to learn medium properties / predict modification

Coupling large enough that many interactions nonperturbative Makes quantitative first-principles predictions challenging

First-principles calculations already do a good job on

- Equation of state at $\mu_B/T < \pi$ from the lattice
- Hydrodynamic description of high-energy heavy-ion systems
- Extraction of η/s etc from data using Bayesian framework
- First-principles dynamics at extreme (unachievable) temperatures

We are making progress but there is much work to be done

- Initial conditions
- Early-time dynamics
- Hydrodynamics or not? for small systems
- Hadronic reinteractions, late-stage evolution
- Hard probes modification of heavy quarks and high-energy jets
- Equation of state at $T \sim 100$ MeV, $\mu_B \sim 1$ GeV
- Transport from the lattice
- ► Learning Equation of State from neutron stars + NS mergers

- Heavy ion collisions give a window into many-body Quantum Chromodynamics
- Thermodynamics at small μ_B: first principles lattice methods. Mature field, results well under control
- Thermodynamics at larger µ: theoretically much harder. Phase diagram partly conjecture
- Dynamics: Heavy Ion Collisions progress in stages: Initial conditions, early evolution, near-equilibrium/hydro, final-state hadrons
- Substantial progress in last 20+ years, with more to come!