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Atomic physics methods probe nuclear properties
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Nuclear Structure
“Mass filters”

Shell model, ab initio, etc.
Many-body interactions

Weak Interaction
Physics

Unitarity of CKM Matrix
νe mass searches

T. Day Goodacre et al., PRC 104, 054322 (2021)
R. N. Wolf et al., PRL 110, 041101 (2013)
J. C. Hardy and I. S. Towner,  PRC 102, 045501 (2020)

Nuclear 
Astrophysics

Nucleosynthesis
Light curves

Neutron star compositions
𝑀𝑎𝑡𝑜𝑚 𝑍,𝑁 = 𝑀𝑛𝑢𝑐 𝑍,𝑁 + 𝑍𝑚𝑒 − 𝐵e(Z)

Nuclear Binding Energy

𝑀𝑛𝑢𝑐 𝑍,𝑁 = 𝑍𝑚𝑝 + 𝑁𝑚𝑛 +
𝐸 𝑍,𝑁

𝑐2
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Tool of choice: mass filters
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Physics Motivation Near 100Sn
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100Sn

N=Z=50

Wigner 
nucleus

lower α-
decay 

end point

β-decay 
strength

proton 
drip line Q-value tension

C. B. Hinke et al., Nature 486, 341 (2012)
D. Lubos et al., Phys. Rev. Lett. 122, 222502 (2019)
M. Mougeot et al., Nat. Phys. 17, 1099 (2021).
A. Mollaebrahimi et al., PLB 839 (2023), 137833

Single-nucleon orbitals
Z. H. Sun et al., Phys. Rev. C 104, 064310 (2021)
J. Park et al., Phys. Rev. C 102, 014304 (2020)
L. Nies et al., Phys. Rev. Lett. 131, 022502 (2023)

Separation energies



Direct/Indirect Measurements Near 100Sn
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Direct/Indirect Measurements Near 100Sn
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Why? 
Quick recap on mass surface near 100Sn – 4 slides

How?
ISOL method and mass spectrometry – 5 slides

So what?
Published and preliminary results from ISOLTRAP – 8 slides

And now?
Outlook and further developments – 3 slides
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Fragmentation at ISODLE
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High energy (1.4 GeV) protons are impacted onto 
a thick target (e.g. 238U, 232Th, 208Pb, 139La, …)
The protons split up the heavy nucleus in 

    one of three ways
▪ Fission
▪ Fragmentation
▪ Spallation

~6000 isotopes predicted by theory
~3000 isotopes already discovered
~1000 isotopes produced by ISOLDE
      74 different elements available

238U

as of 2017

Fission

Fragmentation

Spallation

ISOLDE

T.E. Cocolios

@CERN

Facility

Physics

WITCH

CRIS

ISOLTRAP

Channeling

In-vivo

Radioactive ion beam production
Thick targets for a small project ile

Proton beam

1.4 GeV

up to 2 µA

typical operation

from Easter until

Ski Season

solid metal, liquid

metal, oxides and

carbides

from Li up to U

Pictures courtesy of A. Gottberg and S. Lukic et al., NIMA 565(2006)784

Proton beam 

hits the target

139La
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ISOL challenges
1. Refractory properties
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ISOL challenges
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2. Low yields 3. Contamination

103Sn

103In

103SrF

102Sn

102SrF
102In
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ISOLTRAP Mass Spectrometer
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ISOLTRAP Mass Spectrometer
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ISOLTRAP Mass Spectrometer
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ISOLTRAP Mass Spectrometer
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Multi-Reflection Time-of-Flight Device
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slide 9Wolf et al., IJMS 313, 8 (2012)

Injection

Storage

Ejection
in-trap lift

ToF detectorMirror 1 Mirror 2Pulsed Drift Tube

88Sr 88Rb
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Why? 
Quick recap on mass surface near 100Sn – 4 slides

How?
ISOL method and mass spectrometry – 5 slides

So what?
Published and preliminary results from ISOLTRAP – 8 slides

And now?
Outlook and further developments – 3 slides
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Excitation energy systematics down to N=50
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Neutron deficient In isotopes as 
100Sn core with single p-hole and 
gradual νg7/2 - νd5/2 filling

  single-particle states in 100Sn
  core-excitation dependent    

energy shifts
  particle-hole interactions 

0g7/2

1d5/2

In
π ν

1p1/2

0g9/2

?
?

??
?

50 50

0f5/2 0f5/2

1p1/2

0g9/2

0g7/2

1d5/2

Z=49 N=50-64
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Excitation energy systematics down to N=50
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L. Nies et al., PRL 131, 022502 (2023)

• First direct measurement of 
99m,gsIn

• Most sensitive experiment at 
ISOLTRAP yet (yield <10-1 cts./s)

Excitation energy constant 
over many mass numbers

99In

99SrF

99Inm

-

…

N
Z-1

N
Z

…

50h
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Sn22

Nuclear Structure Near 100Sn: Indium ½- states
AME 2020

99In
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M. Mougeot et al., Nature Physics 17, p. 1099–1103 (2021)
L. Nies et al., PRL 131, 022502 (2023)

• Most sensitive ISOLTRAP 
experiment yet (~ 0.1 pps)

• Nearly constant excitation 
energies down to N=50 
challenge for nuclear 
models



Sn23

Nuclear Structure Near 100Sn: Indium ½- states
AME 2020

99In
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• Most sensitive ISOLTRAP 
experiment yet (~ 0.1 pps)

• Nearly constant excitation 
energies down to N=50 
challenge for nuclear 
models

• Direct comparison of 
calculations to nuclear 
moments



Sn24

Nuclear Structure Near 100Sn: Indium ½- states
AME 2020

99In
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M. Mougeot et al., Nature Physics 17, p. 1099–1103 (2021)
L. Nies et al., PRL 131, 022502 (2023)

• Most sensitive ISOLTRAP 
experiment yet (~ 0.1 pps)

• Nearly constant excitation 
energies down to N=50 
challenge for nuclear 
models

• Direct comparison of 
calculations to nuclear 
moments

• How will the moments 
evolve towards N=50?



Sn25

Nuclear Structure Near 100Sn: Indium ½- states
AME 2020

99In
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M. Mougeot et al., Nature Physics 17, p. 1099–1103 (2021)
L. Nies et al., PRL 131, 022502 (2023)

• Most sensitive ISOLTRAP 
experiment yet (~ 0.1 pps)

• Nearly constant excitation 
energies down to N=50 
challenge for nuclear 
models

• Direct comparison of 
calculations to nuclear 
moments

• How will the moments 
evolve towards N=50?

• Inclusion of two-body 
current improves accuracy 
of ab-initio technique



Nuclear Structure Near 100Sn: Indium 9/2+ states
▪ Mass of 100Sn improved by 60 keV based on Q-value 

to 100In [1-2], confirms slight tension between values

[1] Hinke et al., Nature 486, 341-345 (2012)
[2] Lubos et al, PRL 122, 222502 (2019)
[3] M. Mougeot et al., Nature Physics 17, 1099–1103 (2021) 

[3]
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Nuclear Structure Near 100Sn: Indium 9/2+ states
▪ Mass of 100Sn improved by 60 keV based on Q-value 

to 100In [1-2], confirms slight tension between values
▪ in-accurate mass for 103Sn derived from Q-values 

rejected from AME2020
▪ extrapolated masses yield more consistent behavior
▪ direct mass-measurement to confirm expected 

behavior of mass filters

[1] Hinke et al., Nature 486, 341-345 (2012)
[2] Lubos et al, PRL 122, 222502 (2019)
[3] M. Mougeot et al., Nature Physics 17, 1099–1103 (2021) 

[3]

[3]

[3]

[3]
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97Cd

Nuclear Structure Near 100Sn: Cadmium

▪ Testing “spider-web” ion source mount, 
thermal shielding, and back-of-the-line 
heating

▪ Factor 5-20 higher extracted yield than 
previously measured

A. Koliatos, thermal optimization, design and prototype

98Cd

97Cd

96Cd

PRELIMINARY
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97Cd

Nuclear Structure Near 100Sn: Cadmium

▪ Improved precision on 98Cd
▪ First direct measurement of 97Cd
   including 25/2+ isomer
▪ Adding data point to neutron-

separation energy at Z=48 below N=50

98Cd

Redacted content
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96Cd

Nuclear Structure Near 100Sn: Cadmium

▪ Yields for 96Cd expectedly low, but 
measurement seems feasible within a 
few shifts

Redacted content



Sn31

Nuclear Structure Near 100Sn: Tin
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▪ in-accurate mass for 103Sn 
derived from Q-values 
rejected from AME2020

▪ direct mass-measurement 
pushes data point 
towards expected value 
and confirms AME20 
extrapolation

Redacted content



Sn32

Nuclear Structure Near 100Sn: Tin
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▪ in-accurate mass for 103Sn 
derived from Q-values 
rejected from AME2020

▪ direct mass-measurement 
pushes data point 
towards expected value 
and confirms AME20 
extrapolation

▪ Ab-inition calculations 
from [1] suggest 101Sn to 
be +300keV more bound 
than extrapolated

[1] Mougeot et al., Nature Physics 17, p. 1099–1103 (2021)

Redacted content



Why? 
Quick recap on mass surface near 100Sn – 3 slides

How?
ISOL method, progress at ISOLDE, and mass spectrometry – 7 slides

So what?
Published and preliminary results from ISOLTRAP – 8 slides

And now?
Outlook and further developments – 3 slides
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Sn34

Outlook: Mass selective re-trapping
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Sn35

Outlook: Mass selective re-trapping
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Sn36

Outlook: The Edge of Sensitivity 
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96Cd
98In 101-102Sn

AME 2020

101-102Sn
98In

96Cd

New: 18 shifts

8 shifts remaining

8 shifts remaining

PRELIMINARY



Summary

▪ Overview of the current state of ISOL 
production of RIBs near 100Sn and 
their limitations

▪ Current status of the ISOLTRAP MR-
ToF MS performance

▪ Nuclear structure investigation near 
doubly-magic 100Sn through atomic 
masses

▪ Design of sensitivity-enhancing mass-
selective re-trapping Paul trap
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