DPG Spring Meeting 2024, Gießen, 11.03.-15.03.2024

Nuclear structure near ¹⁰⁰Sn from atomic masses A challenge to nuclear theory?

Lukas Nies¹ for the ISOLTRAP Collaboration

¹CERN, Switzerland

Why? Quick recap on mass surface near ¹⁰⁰Sn – 4 slides

How? ISOL method and mass spectrometry – 5 slides

So what? Published and preliminary results from ISOLTRAP – 8 slides

And now? Outlook and further developments – 3 slides

Atomic physics methods probe nuclear properties

Tool of choice: mass filters

12/03/2024

slide 2

Lukas Nies ISOLTRAP Collaboration

Physics Motivation Near ¹⁰⁰Sn

12/03/2024 slide 3

ISOLTRAP

Collaboration

)TRAP

Direct/Indirect Measurements Near 100Sn

Featured in Physics Editors' Suggestion

Superallowed α Decay to Doubly Magic 100 Sn C. Auranen, D. Seweryniak, M. Albers, A. D. Ayangeakaa, S. Bottoni, M. P. Carpenter, C. J. Chiara, P. Copp, H. M. David, D. T. Doherty, J. Harker, C. R. Hoffman, R. V. F. Janssens, T. L. Khoo, S. A. Kuvin, T. Lauritsen, G. Lotay, A. M. Rogers, J. Sethi, C. Scholey, R. Talwar, W. B. Walters, P. J. Woods, and S. Zhu Fusion evap. Phys. Rev. Lett. 121, 182501 - Published 30 October 2018 55 AME2020 stable 54 measured 53 extrapolated 52 10-10 number Z δm/m 51 10-8 Precision 50 Sn Proton 10-6 49 ∃n 48 Cd -10^{-4} 47 Ag 46 Pd 50 51 52 53 54 46 47 48 49 55 Neutron number N

12/03/2024

slide 4

Lukas Nies ISOLTRAP Collaboration

Direct/Indirect Measurements Near ¹⁰⁰Sn

Lukas Nies ISOLTRAP Collaboration

Direct/Indirect Measurements Near ¹⁰⁰Sn

Lukas Nies ISOLTRAP Collaboration

Direct/Indirect Measurements Near 100Sn

slide 4

Collaboration

Why? Quick recap on mass surface near ¹⁰⁰Sn – 4 slides

How? ISOL method and mass spectrometry – 5 slides

So what? Published and preliminary results from ISOLTRAP – 8 slides

And now? Outlook and further developments – 3 slides

Fragmentation at ISODLE

- Weigh energy (1.4 GeV) protons are impacted onto a thick target (e.g. ²³⁸U, ²³²Th, ²⁰⁸Pb, ¹³⁹La, ...)
- The protons split up the heavy nucleus in one of three ways
 - Fission
 - Fragmentation
 - Spallation

~6000 isotopes predicted by theory
~3000 isotopes already discovered
~1000 isotopes produced by ISOLDE
74 different elements available
as of 2017

ISOL challenges

3. Contamination

Lukas Nies

Collaboration

ISOLTRAP

ISO

TRAP

2. Low yields

Multi-Reflection Time-of-Flight Device

Why? Quick recap on mass surface near ¹⁰⁰Sn – 4 slides

How? ISOL method and mass spectrometry – 5 slides

So what? Published and preliminary results from ISOLTRAP – 8 slides

And now? Outlook and further developments – 3 slides

Excitation energy systematics down to N=50

Neutron deficient In isotopes as ¹⁰⁰Sn core with single p-hole and gradual $vg_{7/2}$ - $vd_{5/2}$ filling

 single-particle states in ¹⁰⁰Sn
core-excitation dependent energy shifts
particle-hole interactions

Excitation energy systematics down to N=50

- Most sensitive ISOLTRAP experiment yet (~ 0.1 pps)
- Nearly constant excitation energies down to N=50 challenge for nuclear models
- Direct comparison of calculations to nuclear moments

M. Mougeot *et al., Nature Physics* **17**, p. 1099–1103 (2021) L. Nies et al., PRL **131**, 022502 (2023)

- Most sensitive ISOLTRAP experiment yet (~ 0.1 pps)
- Nearly constant excitation energies down to N=50 challenge for nuclear models
- Direct comparison of calculations to nuclear moments
- How will the moments evolve towards N=50?

Lukas Nies

Collaboration

ISOLTRAP

TRA

M. Mougeot *et al., Nature Physics* **17**, p. 1099–1103 (2021) L. Nies et al., PRL **131**, 022502 (2023)

- Most sensitive ISOLTRAP experiment yet (~ 0.1 pps)
- Nearly constant excitation energies down to N=50 challenge for nuclear models
- Direct comparison of calculations to nuclear moments
- How will the moments evolve towards N=50?
- Inclusion of two-body current improves accuracy of *ab-initio* technique

Lukas Nies

ISOLTRAP

Collaboration

TRIP

M. Mougeot *et al., Nature Physics* **17**, p. 1099–1103 (2021) L. Nies et al., PRL **131**, 022502 (2023)

Nuclear Structure Near ¹⁰⁰Sn: Indium 9/2⁺ states

 Mass of ¹⁰⁰Sn improved by 60 keV based on Q-value to ¹⁰⁰In [1-2], confirms slight tension between values

Hinke et al., Nature **486**, 341-345 (2012)
Lubos et al, PRL **122**, 222502 (2019)
M. Mougeot et al., Nature Physics 17, 1099–1103 (2021)

29/02/2024 slide 13

CERN

1991

Nuclear Structure Near ¹⁰⁰Sn: Indium 9/2⁺ states

- Mass of ¹⁰⁰Sn improved by 60 keV based on Q-value to ¹⁰⁰In [1-2], confirms slight tension between values
- in-accurate mass for ¹⁰³Sn derived from Q-values rejected from AME2020
- extrapolated masses yield more consistent behavior
- direct mass-measurement to confirm expected behavior of mass filters

[2] Lubos et al, PRL 122, 222502 (2019)
[3] M. Mougeot et al., Nature Physics 17, 1099–1103 (2021)

29/02/2024 slide 13

Nuclear Structure Near ¹⁰⁰Sn: Cadmium

- Testing "spider-web" ion source mount, thermal shielding, and back-of-the-line heating
- Factor 5-20 higher extracted yield than previously measured

Lukas Nies

ISOLTRAP

Collaboration

TRUE

Nuclear Structure Near ¹⁰⁰Sn: Cadmium

Nuclear Structure Near ¹⁰⁰Sn: Cadmium

 Yields for 96Cd expectedly low, but measurement seems feasible within a few shifts

ISOLTRAP

Collaboration

TRI

Nuclear Structure Near ¹⁰⁰Sn: Tin

- in-accurate mass for ¹⁰³Sn derived from Q-values rejected from AME2020
- direct mass-measurement pushes data point towards expected value and confirms AME20 extrapolation

Redacted content

Nuclear Structure Near ¹⁰⁰Sn: Tin

- in-accurate mass for ¹⁰³Sn derived from Q-values rejected from AME2020
- direct mass-measurement pushes data point towards expected value and confirms AME20 extrapolation
- Ab-inition calculations from [1] suggest ¹⁰¹Sn to be +300keV more bound than extrapolated

Redacted content

Why? Quick recap on mass surface near ¹⁰⁰Sn – 3 slides

How? ISOL method, progress at ISOLDE, and mass spectrometry – 7 slides

So what? Published and preliminary results from ISOLTRAP – 8 slides

And now? Outlook and further developments – 3 slides

Outlook: Mass selective re-trapping

<u>Challenge:</u> Low production cross-sections and isobaric and molecular contamination

Slide by D. Lange	ge	Lang	D.	by	е	lid	5
-------------------	----	------	----	----	---	-----	---

12/03/2024 slide 18 Lukas Nies ISOLTRAP Collaboration

CÉRN

Outlook: Mass selective re-trapping

Outlook: The Edge of Sensitivity

	cientific Committee Paper 8 shifts remaining		55	\times
Report number	CERN-INTC-2020-025 ; INTC-P-553		54	
Title	Mass measurement of the proton-rich ⁹⁹ In and self-conjugate ⁹⁸ In nuclides for nuclear and astrophysical studies		53	$\overline{\bigcirc}$
Project Manager/Technica Coordinator	l Nies, Lukas	er Z	52	*
Author(s)	Nies, L (CERN; Greifswald U.); Blaum, K (Heidelberg, Max Planck Inst.); Karthein, J (CERN; Heidelberg, Max Planck Inst.); Kulikov, I (Darmstadt, GSI); Litvinov, Yu A (Darmstadt, GSI); Lunney, D (IJCLab, CNRS, Orsay); Manea, V (IJCLab, CNRS, Orsay); Mougeot, M (CERN); Ong, W J (LLNL, Livermore; JINA); Schatz, H (JINA; Michigan State U., NSCL; Michigan State U.) Show all 14 authors	quinu	51 50-	
S	cientific Committee Paper 8 shifts remaining	Protor	49 48	90
Report number C	ERN-INTC-2022-031 ; INTC-P-637		47	
Title	losing in on ¹⁰⁰ Sn: Mass Measurements of the Neutron Deficient N=51-53 Tin Isotopes		16	
Project Manager/Technical N Coordinator	lies, Lukas			46
Author(s)	lies, L (CERN/University of Greifswald (DE)) ; Blaum, K (Heidelberg, Max Planck Inst.) ; Huang, W J (Advanced Energy Science and Technology Guangdong aboratory, Huizhou 516003, China) ; Karthein, J (Massachusetts Institute of Technology, Cambridge MA 02139, USA) ; Litvinov, Yu A (GSI Helmholtzzentrum für chwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt, Germany) ; Lunney, D (Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France) ; fanea, V (Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France) ; Mougeot, M (Heidelberg, Max Planck Inst.) ; Naimi, S (Université Paris-Saclay, NRS/IN2P3, IJCLab, 91405 Orsay, France and RIKEN, Japan) ; Schweiger, Ch (Heidelberg, Max Planck Inst.) <i>Show all 13 authors</i>	10 Q	7	SrF co Sn #7 In #73 Cd #8

Scientific Comm	ittee Paper	New: 18 shifts
Report number	CERN-INTC-2023-075 ; INTC-P-682	
Title	Mass measurement of the neutron-deficient $^{96}\mathrm{Cd}$ with ISOLTRAP	
Project Manager/Technical Coordinator	Mougeot , Maxime	
Author(s)	Mougeot, Maxime (University of Jyväskylä)	

ÇÊRN

199192

12/03/2024

Summary

- Overview of the current state of ISOL production of RIBs near ¹⁰⁰Sn and their limitations
- Current status of the ISOLTRAP MR-ToF MS performance
- Nuclear structure investigation near doubly-magic ¹⁰⁰Sn through atomic masses
- Design of sensitivity-enhancing massselective re-trapping Paul trap

