

3-BODY PROBLEM FROM PHENOMENOLOGY AND LATTICE QCD

MAXIM MAI

University of Bonn | The George Washington University

Heisenberg-Programm

DFG Deutsche Forschungsgemeinschaft

NSF PHY-2012289

DFG

DOE DE-SC0016582

DOE DE-SC0016583

THREE-BODY PROBLEM

Gravitational three-body problem

- goal: space-time trajectories
- challenges:
 - no closed solutions
 - in general non-repeating (few exceptions^[1])
- birth of mathematical chaos^[2]

THREE-BODY PROBLEM

Quantum mechanical three-body problem

- goal: rigorous scattering theory
- challenges:
 - continuum of two-body scattering states^[1]
 - 8 kinematic degrees of freedom

Impact

- Many known states have large 3-body content
 - Roper N(1440)
 - X(3872)
 - $a_1(1260), a_1(1420)?$
- Beyond Standard Model searches (τ -EDM/...)
- Exotic states of matter^[1]

HADRON SPECTRUM

Experimental input

- many high-precision experiments^[2] \rightarrow line-shapes resonances <--> increased interaction rates
 - mod reaction-type
 - mod kinematic singularities^[3]

Universal resonance parameter

- S-matrix theory: transition amplitude
 - Unitarity/Analyticity/Crossing symmetry
 - Poles on unphysical Riemann Sheets
- Boundary ($E \in \mathbb{R}$):
 - Experiment
 - Lattice QCD
 - CHPT

 $\operatorname{Re} E/\operatorname{GeV}$

Universal resonance parameter

- S-matrix theory: *transition amplitude*
 - Unitarity/Analyticity/Crossing symmetry
 - Poles on unphysical Riemann Sheets ____
- Boundary ($E \in \mathbb{R}$):
 - Experiment —
 - Lattice QCD _
 - CHPT _

 $\operatorname{Re} E/\operatorname{GeV}$

Maxim Mai – DPG-Frühjahrstagung 2024

0.00

Universal resonance parameter

- S-matrix theory: *transition amplitude*
 - Unitarity/Analyticity/Crossing symmetry _
 - Poles on unphysical Riemann Sheets
- Boundary ($E \in \mathbb{R}$):
 - Experiment —
 - Lattice QCD _
 - CHPT _

 $\operatorname{Re} E/\operatorname{GeV}$

Maxim Mai – DPG-Frühjahrstagung 2024

0.00

Universal resonance parameter

- S-matrix theory: transition amplitude
 - Unitarity/Analyticity/Crossing symmetry
 - Poles on unphysical Riemann Sheets
- Boundary ($E \in \mathbb{R}$):
 - Experiment
 - Lattice QCD
 - CHPT

Tridge (Midland, MI/USA)

TRANSITION AMPLITUDE

TRANSITION AMPLITUDE

"Infinite Volume Unitarity" — IVU formalism^[1]

- Express 3-body through a 2+1 system^[2]
 - Unitarity(on-shell configurations): $B, \Sigma \in \mathbb{C}$
 - Dynamics(input): $C, \tilde{K} \in \mathbb{R}$

[1] MM/Hu/Döring/Pilloni/Szczepaniak Eur.Phys.J.A 53 (2017)
 [2] Related approaches: Hansen/Sharpe(2014)....; Wunderlich et al. JHEP 08 (2019); Jackura et al. Eur.Phys.J.C 79 (2019);

HILBERT'S HOTEL

"Infinite Volume Unitarity" — IVU formalism

- Analytic structure of the one-particle exchange
 - Left-hand cuts^[1] $T_{cc}(3875)$ etc..
 - Landau singularities
 - Triangles^[2] + Boxes + Boxes + \dots ^[3] 0

 [1] Du et al. Phys.Rev.Lett. 131 (2023) 13; Hansen et al. 2401.06609 [hep-lat]
 [2] Korpa/Lutz/Guo/Heo Phys.Rev.D 107 (2023) 3; Isken et al. 2309.09695; ... Ketzer/Mikhashenko/Aceti/Dai/Oset/Bayar/Guo... [3] Sakhtivasan/MM in preparation

https://www.ias.edu/ideas/2016/pires-hilbert-hotel

HILBERT'S HOTEL

"Infinite Volume Unitarity" — IVU formalism

- Analytic structure of the one-particle exchange
 - Left-hand cuts^[1] $T_{cc}(3875)$ etc..
 - Landau singularities
 - Triangles^[2] + Boxes + Boxes+...^[3] 0

HILBERT'S HOTEL

"Infinite Volume Unitarity" — IVU formalism

- Analytic structure of the one-particle exchange
 - Left-hand cuts^[1] $T_{cc}(3875)$ etc..
 - Landau singularities
 - Triangles^[2] + Boxes + Boxes+...^[3] 0

"Infinite Volume Unitarity" — IVU formalism

- Analytic structure of the one-particle exchange

FINITE-VOLUME SPECTRUM

Lattice QCD: numerical access to QCD Green's functions:

Euclidean space-time / unphysical pion mass / finite-volume

S-matrix, phenomenology, experiment...

[1] Lüscher, Gottlieb, Rummukainen, Feng, Li, Döring, Briceño, Meißner, Rusetsky, Hansen, MM, Blanton, ... Reviews: Briceno/Dudek/Young (2017) Rev.Mod.Phys. 90 (2018) 2 Hansen/Sharpe Ann.Rev.Nucl.Part.Sci. 69 (2019); MM/Doring/Rusetsky Eur.Phys.J.ST 230 (2021);

FINITE-VOLUME SPECTRUM

Lattice QCD: numerical access to QCD Green's functions:

Euclidean space-time / unphysical pion mass / finite-volume

S-matrix, phenomenology, experiment...

[1] Lüscher, Gottlieb, Rummukainen, Feng, Li, Döring, Briceño, Meißner, Rusetsky, Hansen, MM, Blanton, ... **Reviews**: Briceno/Dudek/Young (2017) Rev.Mod.Phys. 90 (2018) 2 Hansen/Sharpe Ann.Rev.Nucl.Part.Sci. 69 (2019); MM/Doring/Rusetsky Eur.Phys.J.ST 230 (2021);

"Finite Volume Unitarity" – FVU formalism

- On-shell particles "feel" the box-size
- Three-body quantization condition

FINITE-VOLUME SPECTRUM

Lattice QCD: numerical access to QCD Green's functions:

Euclidean space-time / unphysical pion mass / finite-volume

S-matrix, phenomenology, experiment...

[1] Lüscher, Gottlieb, Rummukainen, Feng, Li, Döring, Briceño, Meißner, Rusetsky, Hansen, MM, Blanton, ... **Reviews**: Briceno/Dudek/Young (2017) Rev.Mod.Phys. 90 (2018) 2 Hansen/Sharpe Ann.Rev.Nucl.Part.Sci. 69 (2019); MM/Doring/Rusetsky Eur.Phys.J.ST 230 (2021);

FVU
det
$$\left[2L^3 E_{\mathbf{p}} \left(\tilde{K}_2^{-1} - \Sigma_2^L \right) - B - C \right]^{T_{1g}}$$

"Finite Volume Unitarity" — FVU formalism

- On-shell particles "feel" the box-size
- Three-body quantization condition

IVU

$$T^{c} = B + C + \int \frac{d^{3}\ell}{(2\pi)^{3}} \frac{(B+C)}{2E_{l}} \frac{1}{\tilde{K}_{n}^{-1} - \Sigma_{n}}$$

BLUEPRINT — $a_1(1260)$

INPUT[']

[1] Schael [ALEPH] Phys.Rept. 421 (2005); Nucl.Phys.B 79; Phys.Rev.D 7; [GWQCD] PRD94(2016) PRD98 (2018) PRD 100(2019)
 [2] Sadasivan/MM/Döring/Alexandru/Culver/Lee Phys.Rev.D 101 (2020); MM/Culver/Sadasivan/Brett/Döring/Alexandru/Lee [GWQCD] PRL 127 (2021) other phenomenological determinations: JPAC/....

TRANSITION AMPLITUDES

OUTPUT^[2]

BLUEPRINT – $a_1(1260)$

TRANSITION AMPLITUDES

 [1] Schael [ALEPH] Phys.Rept. 421 (2005); Nucl.Phys.B 79; Phys.Rev.D 7; [GWQCD] PRD94(2016) PRD98 (2018) PRD 100(2019)
 [2] Sadasivan/MM/Döring/Alexandru/Culver/Lee Phys.Rev.D 101 (2020); MM/Culver/Sadasivan/Brett/Döring/Alexandru/Lee [GWQCD] PRL 127 (2021) other phenomenological determinations: JPAC/....

OUTPUT^[2]

ROPER N(1440) – FINITE VOLUME

Simplified pilot study^[1]

self-energy formalism via particle-dimer Lagrangian

l no particle-exchange diagrams

Predict finite-volume spectrum for fixed parameters

 \rightarrow energy shifts very small (opposing effects of $N\sigma$

and $\Delta\pi$ channels)

→ phenomenological input necessary

SUMMARY

THANK YOU

$$T^c = B + C + \int \frac{d^3t}{(2\pi)^3} dt$$

Infinite volume three-body formalism

- Unitarity induced analytic structure
- universal resonance parameter
- singularity structure/Landau singularities

Finite-volume three-body formalism FVU

- 3b quantization condition
- several applications
- first chiral trajectories of 3b-resonances

OUTLOOK

- $\pi\pi N$ content of Roper-resonance •
 - ... connections to DCC global studies
- $\pi\pi\Lambda$ and strangeness resonances (?)
- $\overline{K}d$ scattering
-

