

Unlocking the mysteries of nuclear interactions and their astrophysical impact

Laura Šerkšnytė Supervisor: Prof. Dr. Laura Fabbietti **Technical University of Munich**

Dissertation Prize Symposium 11th March 2024, Gießen

Based on: LS et al, PRD 105, 083021 (2022) **ALICE, Nature Physics 19, 61-71 (2023)** ALICE, EPJA 59 145 (2023) Del Grande, LS et al. EPJC 82 244 (2022)

Nuclear studies on Earth

Nuclear studies on Earth

Measure: π , K, p, d, He . . .

<u>laura.serksnyte@tum.de</u> | DPG Dissertation Prize Symposium

ALICE

Excellent particle tracking and identification capabilities LHC Run 2 pp @ \sqrt{s} = 13 TeV: 1.2 billion events!

ALICE, Int.J.Mod.Phys.A 29 (2014) 1430044 ALICE, JINST 3 (2008) S08002

Measure: \overline{d} , $\overline{{}^{3}\text{He}}$

Measure: \overline{d} , $\overline{{}^{3}\text{He}}$

laura.serksnyte@tum.de | DPG Dissertation Prize Symposium

$p + p \rightarrow \overline{A} + X$ $\chi + \chi \to b\overline{b} \to \overline{A} + X$ $\overline{A} + p \rightarrow Y$

Measure: \overline{d} , $\overline{{}^{3}\text{He}}$

laura.serksnyte@tum.de | DPG Dissertation Prize Symposium

$p + p \rightarrow \overline{A} + X$ $\chi + \chi \to b\overline{b} \to \overline{A} + X$ $\overline{A} + p \rightarrow Y$

Measure: p - p - p, $p - p - \Lambda$

Part 1

Part 1

Measure: p - p - p, $p - p - \Lambda$

laura.serksnyte@tum.de | DPG Dissertation Prize Symposium

Dark matter searches

Universe - around 27% made of dark matter \bullet

Dark matter searches

- Universe around 27% made of dark matter
- Indirect searches look for annihilation products

Dark matter searches

- Universe around 27% made of dark matter
- Indirect searches look for annihilation products
- Promising probe: cosmic ray antinuclei

Alpha magnetic spectrometer AMS-02

- 7.5 ton spectrometer on the International Space Station
- High-precision cosmic ray measurements over a large range of nuclei

Alpha magnetic spectrometer AMS-02

- 7.5 ton spectrometer on the International Space Station
- High-precision cosmic ray measurements over a large range of nuclei

Alpha magnetic spectrometer AMS-02

- 7.5 ton spectrometer on the International Space Station
- High-precision cosmic ray measurements over a large range of nuclei

Paolo Zuccon for AMS-02 Collaboration in MIAPP22 workshop

Transport equation

$$\frac{\partial \psi}{\partial t} = q(\mathbf{r}, p) + \mathbf{div}(D_{xx}\mathbf{grad}\psi - \mathbf{V}\psi) + \frac{\partial}{\partial p}p^2$$

$p^2 D_{pp} \frac{\partial}{\partial p} \frac{\psi}{p^2} - \frac{\partial}{\partial p} \left[\psi \frac{dp}{dt} - \frac{p}{3} (\mathbf{div} \cdot \mathbf{V}) \psi \right] - \frac{\psi}{\tau_f} - \frac{\psi}{\tau_r}$

Transport equation

$$\frac{\partial \psi}{\partial t} = \mathbf{q}(\mathbf{r}, p) + \mathbf{div}(D_{xx}\mathbf{grad}\psi - \mathbf{V}\psi) + \frac{\partial}{\partial p}p^2$$
Source
Function

${}^{2}D_{pp}\frac{\partial}{\partial p}\frac{\psi}{p^{2}} - \frac{\partial}{\partial p}\left[\psi\frac{dp}{dt} - \frac{p}{3}(\mathbf{div}\cdot\mathbf{V})\psi\right] - \frac{\psi}{\tau_{f}} - \frac{\psi}{\tau_{r}}$

Transport equation

$$D_{pp}\frac{\partial}{\partial p}\frac{\psi}{p^2} - \frac{\partial}{\partial p}\left[\psi\frac{dp}{dt} - \frac{p}{3}(\mathbf{div}\cdot\mathbf{V})\psi\right] - \frac{\psi}{\tau_f} - \frac{\psi}{\tau_r}$$

Propagation: diffusion, convection...

Transport equation

$$D_{pp}\frac{\partial}{\partial p}\frac{\psi}{p^2} - \frac{\partial}{\partial p}\left[\psi\frac{dp}{dt} - \frac{p}{3}(\mathbf{div}\cdot\mathbf{V})\psi\right] - \frac{\psi}{\tau_f} - \frac{\psi}{\tau_r}$$

Propagation: diffusion, convection...

Fragmentation, annihilation

Transport equation

$$\frac{\partial \psi}{\partial t} = q(\mathbf{r}, p) + \left[\mathbf{div}(D_{xx}\mathbf{grad}\psi - \mathbf{V}\psi) + \frac{\partial}{\partial p}p^2 D_{pp}\frac{\partial}{\partial p}\frac{\psi}{p^2} - \frac{\partial}{\partial p} \left[\psi \frac{dp}{dt} - \frac{p}{3}(\mathbf{div} \cdot \mathbf{V})\psi \right] - \frac{\psi}{\tau_f} - \frac{\psi}{\tau_r} \right]$$
Source
Function
Propagation: diffusion, convection...
Fragmentation

Can be numerically solved using the GALPROP code

A. W. Strong and I. V. Moskalenko, ApJ 509 212 (1998)

on,

Transport equation

$$\frac{\partial \psi}{\partial t} = q(\mathbf{r}, p) + \left[\mathbf{div}(D_{xx}\mathbf{grad}\psi - \mathbf{V}\psi) + \frac{\partial}{\partial p}p^2 D_{pp}\frac{\partial}{\partial p}\frac{\psi}{p^2} - \frac{\partial}{\partial p} \left[\psi \frac{dp}{dt} - \frac{p}{3}(\mathbf{div} \cdot \mathbf{V})\psi \right] - \frac{\psi}{\tau_f} - \frac{\psi}{\tau_r} \right]$$
Source
Function
Propagation: diffusion, convection...
Fragmentation

Can be numerically solved using the GALPROP code

A. W. Strong and I. V. Moskalenko, ApJ 509 212 (1998)

on,

Transport equation

$$\frac{\partial \psi}{\partial t} = q(\mathbf{r}, p) + \left[\mathbf{div}(D_{xx}\mathbf{grad}\psi - \mathbf{V}\psi) + \frac{\partial}{\partial p}p^2 D_{pp}\frac{\partial}{\partial p}\frac{\psi}{p^2} - \frac{\partial}{\partial p} \left[\psi \frac{dp}{dt} - \frac{p}{3}(\mathbf{div} \cdot \mathbf{V})\psi \right] - \frac{\psi}{\tau_f} - \frac{\psi}{\tau_r} \right]$$
Source
Function
Propagation: diffusion, convection...
Fragmentation

Can be numerically solved using the GALPROP code

A. W. Strong and I. V. Moskalenko, ApJ 509 212 (1998)

on,

Inelastic antihelium cross-section

- Series of inelastic cross section measurements on heavy target material $\langle A \rangle = 34.7$
 - antideuterons, antitriton and antihelium-3 ALICE: PRL 125, 162001; PLB 848, 138337 (2024); Nature Physics 19, 61-71 (2023)

Inelastic antihelium cross-section

- Series of inelastic cross section measurements on heavy target material $\langle A \rangle = 34.7$
 - antideuterons, antitriton and antihelium-3 ALICE: PRL 125, 162001; PLB 848, 138337 (2024); Nature Physics 19, 61-71 (2023)

Inelastic antihelium cross-section

- Series of inelastic cross section measurements on heavy target material $\langle A \rangle = 34.7$
 - antideuterons, antitriton and antihelium-3 ALICE: PRL 125, 162001; PLB 848, 138337 (2024); Nature Physics 19, 61-71 (2023)
- Estimate for proton and helium targets at low energies

<u>laura.serksnyte@tum.de</u> | DPG Dissertation Prize Symposium

Inelastic interaction effect

<u>laura.serksnyte@tum.de</u> | DPG Dissertation Prize Symposium

Inelastic interaction effect

<u>laura.serksnyte@tum.de</u> | DPG Dissertation Prize Symposium

Inelastic interaction effect

<u>laura.serksnyte@tum.de</u> | DPG Dissertation Prize Symposium

Inelastic interaction effect

Good S/B

<u>laura.serksnyte@tum.de</u> | DPG Dissertation Prize Symposium

Inelastic interaction effect

Good S/B

 $Flux(\sigma_{inel})$ Iransparency $Flux(\sigma_{inel} = 0)$

Good S/B

High transparency

 $Flux(\sigma_{inel})$ Iransparency $Flux(\sigma_{inel} = 0)$

Cosmic-ray antinuclei

Our Galaxy is transparent to the propagation of antinuclei

laura.serksnyte@tum.de | DPG Dissertation Prize Symposium

Three-baryon correlations

Cosmic-ray antinuclei

Our Galaxy is transparent to the propagation of antinuclei

laura.serksnyte@tum.de | DPG Dissertation Prize Symposium

Three-baryon correlations

Neutron star density > $2\rho_0$

<u>laura.serksnyte@tum.de</u> | DPG Dissertation Prize Symposium

- Neutron star density > $2\rho_0$
- Strange hadrons might appear in the system

- Neutron star density > $2\rho_0$
- Strange hadrons might appear in the system

Adapted from D. Lonardoni et al., PRL 114, 092301 (2015)

- Neutron star density > $2\rho_0$
- Strange hadrons might appear in the system
- Three-body interactions necessary

Adapted from D. Lonardoni et al., PRL 114, 092301 (2015)

- Neutron star density > $2\rho_0$
- Strange hadrons might appear in the system
- Three-body interactions necessary

Adapted from D. Lonardoni et al., PRL 114, 092301 (2015)

laura.serksnyte@tum.de | DPG Dissertation Prize Symposium

<u>laura.serksnyte@tum.de</u> | DPG Dissertation Prize Symposium

S.E. Koonin PLB 70 43 (1977) D. Mihaylov et al., EPJ. C78 (2018) 394

$$= \mathcal{N} \frac{N \text{same}(k^*)}{N \text{mixed}(k^*)} = \int S(r^*) \left| \psi(\mathbf{k}^*, \mathbf{r}^*) \right|^2 \mathbf{d}^3$$

Typical 1 fm relative distance in pp collisions \rightarrow study short-range nuclear interaction

<u>laura.serksnyte@tum.de</u> | DPG Dissertation Prize Symposium

S.E. Koonin PLB 70 43 (1977) D. Mihaylov et al., EPJ. C78 (2018) 394

$$= \mathcal{N} \frac{N \text{same}(k^*)}{N \text{mixed}(k^*)} = \int S(r^*) \left| \psi(\mathbf{k}^*, \mathbf{r}^*) \right|^2 \mathbf{d}^3$$

Typical 1 fm relative distance in pp collisions \rightarrow study short-range nuclear interaction

<u>laura.serksnyte@tum.de</u> | DPG Dissertation Prize Symposium

S.E. Koonin PLB 70 43 (1977) D. Mihaylov et al., EPJ. C78 (2018) 394

$$= \mathcal{N} \frac{N \text{same}(k^*)}{N \text{mixed}(k^*)} = \int S(r^*) \left| \psi(\mathbf{k}^*, \mathbf{r}^*) \right|^2 \mathbf{d}^3$$

Typical 1 fm relative distance in pp collisions \rightarrow study short-range nuclear interaction

<u>Iaura.serksnyte@tum.de</u> | DPG Dissertation Prize Symposium

S.E. Koonin PLB 70 43 (1977) D. Mihaylov et al., EPJ. C78 (2018) 394

$$= \mathcal{N} \frac{N \text{same}(k^*)}{N \text{mixed}(k^*)} = \int S(r^*) \left| \psi(\mathbf{k}^*, \mathbf{r}^*) \right|^2 \mathbf{d}^3$$

<u>laura.serksnyte@tum.de</u> | DPG Dissertation Prize Symposium

S.E. Koonin PLB 70 43 (1977) D. Mihaylov et al., EPJ. C78 (2018) 394

$$= \mathcal{N} \frac{N \text{same}(k^*)}{N \text{mixed}(k^*)} = \int S(r^*) \left| \psi(\mathbf{k}^*, \mathbf{r}^*) \right|^2 \mathbf{d}^3$$

 k^* - relative momentum in the pair rest frame

$$C(Q_3) = \mathcal{N} \frac{N_{\text{same}}(Q_3)}{N_{\text{mixed}}(Q_3)}$$
$$Q_3 = \sqrt{-q_{12}^2 - q_{23}^2 - q_{31}^2}$$

Three-particle correlation function

- two-body interactions
- three-body interaction

Cumulants in femtoscopy

Access genuine three-body correlations employing Kubo's cumulants [1]:

Measured three-body correlation

Genuine three-body correlations ╉

<u>laura.serksnyte@tum.de</u> | DPG Dissertation Prize Symposium

Two-body correlations Single-particle contribution

Cumulants in femtoscopy

Access genuine three-body correlations employing Kubo's cumulants [1]:

In terms of correlation functions:

$$c_{3}(Q_{3}) = C(Q_{3}) - C_{12}(Q_{3}) - C_{23}(Q_{3}) - C_$$

<u>laura.serksnyte@tum.de</u> | DPG Dissertation Prize Symposium

contribution

$Q_3) - C_{31}(Q_3) + 2$

Cumulants in femtoscopy

Access genuine three-body correlations employing Kubo's cumulants [1]:

In terms of correlation functions:

$$c_{3}(Q_{3}) = C(Q_{3}) - C_{12}(Q_{3}) - C_{23}(Q_{3}) - C_{31}(Q_{3}) + 2$$

Lower-order

<u>laura.serksnyte@tum.de</u> | DPG Dissertation Prize Symposium

contribution

contributions

<u>laura.serksnyte@tum.de</u> | DPG Dissertation Prize Symposium

laura.serksnyte@tum.de | DPG Dissertation Prize Symposium

ALICE, EPJA 59 145 (2023)

laura.serksnyte@tum.de | DPG Dissertation Prize Symposium

ALICE, EPJA 59 145 (2023)

laura.serksnyte@tum.de | DPG Dissertation Prize Symposium

laura.serksnyte@tum.de | DPG Dissertation Prize Symposium

laura.serksnyte@tum.de | DPG Dissertation Prize Symposium

Hint of a attractive effects for $p-p-\Lambda$

- Only two identical and charged particles
 - ✓ Main expected contribution from threebody strong interaction

<u>Iaura.serksnyte@tum.de</u> | DPG Dissertation Prize Symposium

Hint of a attractive effects for $p-p-\Lambda$

- Only two identical and charged particles
 - ✓ Main expected contribution from threebody strong interaction

<u>Iaura.serksnyte@tum.de</u> | DPG Dissertation Prize Symposium

Hint of a attractive effects for $p-p-\Lambda$

- Only two identical and charged particles
 - ✓ Main expected contribution from threebody strong interaction
- Developed trigger for Run 3 up to two orders of magnitude increase in statistics!

Hint of a attractive effects for $p-p-\Lambda$

- Only two identical and charged particles
 - ✓ Main expected contribution from threebody strong interaction
- Developed trigger for Run 3 up to two orders of magnitude increase in statistics!

<u>laura.serksnyte@tum.de</u> | DPG Dissertation Prize Symposium

Cosmic-ray antinuclei

Our Galaxy is transparent to the propagation of antinuclei

 10^{2}

<u>Iaura.serksnyte@tum.de</u> | DPG Dissertation Prize Symposium

Three-baryon correlations

Thank you for your attention!

CR video:

Back up

Publications during PhD

- Del Grande, R., Šerkšnytė, L., Fabbietti, L., Mantovani Sarti, V., & Mihaylov, D. (2022). A method to remove lower order contributions in multi-particle femtoscopic correlation functions. The European Physical Journal C, 82(3)
- ALICE Collaboration (2022). Towards the understanding of the genuine three-body interaction for p-p-p and p-p-Λ. arXiv preprint arXiv:2206.03344 (Accepted by EPJA)
- Šerkšnytė, L., Königstorfer, S. et al. (2022). Reevaluation of the cosmic antideuteron flux from cosmic-ray interactions and from exotic sources. Physical Review D, 105(8), 083021
- ALICE Collaboration (2023). Measurement of anti-3He nuclei absorption in matter and impact on their propagation in the Galaxy. Nature Physics 19 (1)
- ALICE Collaboration (2023). Study of the p-p-K⁺ and p-p-K⁻ dynamics using the femtoscopy technique. arXiv preprint arXiv:2303.13448 (Submitted to EPJA)

