THE ASTROPHYSICAL JOURNAL, 301:629-633, 1986 February 15 © 1986 The American Astronomical Society. All rights reserved. Printed in U.S.A.

A NEW ESTIMATE OF THE ¹⁹Ne(p, γ)²⁰Na AND ¹⁵O(α , γ)¹⁹Ne REACTION RATES AT STELLAR ENERGIES

K. LANGANKE,¹ M. WIESCHER,² AND W. A. FOWLER W. K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena

AND

J. GÖRRES Department of Physics, University of Pennsylvania, Philadelphia Received 1985 May 24; accepted 1985 August 19

ABSTRACT

We have improved the Wallace and Woosley estimates of the ¹⁹Ne(p, γ)²⁰Na and ¹⁵O(α , γ)¹⁹Ne reaction rates at stellar energies by using the most recent experimental and theoretical data and a firmer theoretical background. We find a considerable increase in the ¹⁹Ne(p, γ)²⁰Na reaction rate at temperatures $T_9 \leq 0.3$, which may lead to a greater production of intermediate mass elements in the rp-process in stellar evolution. Subject headings: nuclear reactions — nucleosynthesis

Nuclear Astrophysics Deep Underground

Marialuisa Aliotta School of Physics and Astronomy - University of Edinburgh, UK Scottish Universities Physics Alliance

GSI-FAIR Special Colloquium for Michael Wiescher's 75th Birthday

M Aliotta The Messengers of the Universe

5 I 2 5 Neutrino energy (MeV)

Solar Abundance Distribution

Features:

- distribution spans 12 orders of magnitude
- H ~ 75%, He ~ 23%
- C → U ~ 2% ("metals")
- D, Li, Be, B under-abundant
- exponential decrease up to Fe
- almost flat distribution beyond Fe

Why these features? Where do all elements come from?

"for his theoretical and experimental studies of the nuclear reactions of importance in the formation of the chemical elements in the universe"

Stellar Nucleosynthesis: A Major Breakthrough

elements created by **nuclear reactions** in stars

neutroncapture reactions

mainly unstable nuclei

M Aliotta

Mass number A

a Galactic Chemical Evolution

M Aliotta

Stellar Reactions in the Laboratory: Experimental Challenges of Direct Measurements

M Aliotta Thermonuclear Reactions in Stars

Astrophysical energies (Gamow window) << Coulomb repulsion between interacting charges **Experimental approach**: measure $\sigma(E)$ over wide energy, then extrapolate down to E_0 !

M Aliotta Thermonuclear Reactions in Stars

low cross sections \rightarrow low yields \rightarrow poor signal-to-noise ratio

A Pivotal Encounter

Nuclei in the Cosmos I, 1990 – Baden/Vienna, Austria

M. Aliotta Main Sources of Background

ideal location: underground + low concentration of U and Th

The Ideal Location: Laboratori Nazionali del Gran Sasso

CONTRASSIONE CHURPIPURISUICI 442 SERVATO

Note manoscritte di A. Zichichi presentate nella Seduta della Commissione Lavori Pubblici del Senato convocata con urgenza dal Presidente del Senato per discutere la proposta del Progetto Gran Sasso (1979).

M. Aliotta LUNA: A Brief Introduction

LUNA: Laboratory for Underground Nuclear Astrophysics (established early 1990s)

M. Aliotta The LUNA 400 kV facility

30 years of Nuclear Astrophysics at LUNA (LNGS, INFN)

- solar fusion reactions ${}^{3}\text{He}({}^{3}\text{He},2p){}^{4}\text{He}$ ${}^{2}\text{H}(p,\gamma){}^{3}\text{He}$ ${}^{3}\text{He}(\alpha,\gamma){}^{7}\text{Be}$
- electron screening and stopping power
 ²H(³He,p)⁴He
 ³He(²H,p)⁴He
- CNO, Ne-Na and Mg-Al cycles
 ^{12,13}C(p,γ)^{13,14}N
 ^{14,15}N(p,γ)^{15,16}O
 ¹⁶O(p,γ)¹⁷F
 ^{20,21,22}Ne(p,γ)^{21,22,23}Na
 ²²Ne(α,γ)²⁶Mg
 ²³Na(p,γ)²⁴Mg
 ²⁵Mg(p,γ)²⁶Al
- (explosive) hydrogen burning in novae and AGB stars ${}^{17}O(p,\gamma){}^{18}F$ ${}^{17}O(p,\alpha){}^{14}N$ ${}^{18}O(p,\gamma){}^{19}F$ ${}^{18}O(p,\alpha){}^{15}N$
- Big Bang nucleosynthesis

 2 H(α , γ)⁶Li 2 H(p, γ)³He 6 Li(p, γ)⁷Be

neutron capture nucleosynthesis

¹³C(α,n)¹⁶O

some of the lowest cross sections ever measured (few counts/month)

24 reactions in 30 years: ~15 months data taking per reaction!

M Aliotta Notre Dame University

M Aliotta SURF: Sandford Underground Laboratory at Homestake (South Dakota)

Homestake Gold Mine 4850 ft (1.5km) below sea level

M Aliotta CASPAR: The US Underground Lab for Nuclear Astrophysics

CASPAR

Compact Accelerator Systems for Performing Astrophysical Research

1 MV Accelerator Inaugurated July 2017

SURF: Sandford Underground Laboratory at Homestake (South Dakota)

PHYSICAL REVIEW C 106, 065803 (2022)

Investigation of the ${}^{14}N(p, \gamma){}^{15}O$ reaction and its impact on the CNO cycle

B. Frentz[•], ¹ A. Aprahamian[•], ¹ A. Boeltzig[•], ^{1*} T. Borgwardt[•], ^{2,†} A. M. Clark[•], ¹ R. J. deBoer[•], ¹ G. Gilardy[•], ¹ J. Görres, ¹ M. Hanhardt[•], ^{2,3} S. L. Henderson, ¹ K. B. Howard[•], ¹ T. Kadlecek, ² Q. Liu, ¹ K. T. Macon, ^{1,‡} S. Moylan, ¹ C. S. Reingold, ¹ D. Robertson[•], ¹ C. Seymour, ¹ S. Y. Strauss, ¹ F. Strieder[•], ² B. Vande Kolk[•], ¹ and M. Wiescher¹
¹Department of Physics and Astronomy and the Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, Indiana 46556, USA
²Department of Physics, South Dakota School of Mines & Technology, Rapid City, South Dakota 57701, USA

¹⁴N(p, γ)¹⁵O reaction:

CNO cycle, solar neutrinos, solar metallicity, age of Globular Clusters, ...

discrepancies still remain...

SURF: Sandford Underground Laboratory at Homestake (South Dakota)

PHYSICAL REVIEW C 106, 025805 (2022)

Direct measurement of the low-energy resonances in ${}^{22}Ne(\alpha, \gamma) {}^{26}Mg$ reaction Shahina, ^{1,2} J. Görres, ^{1,2} D. Robertson, ^{1,2} M. Couder, ^{1,2} O. Gomez, ^{1,2} A. Gula, ^{1,2} M. Hanhardt, ^{3,4} T. Kadlecek, ³ R. Kelmar[©], ^{1,2} P. Scholz[©], ^{1,2} A. Simon[©], ^{1,2} E. Stech, ^{1,2} F. Strieder[©], ³ and M. Wiescher[©], ^{1,2} ¹Department of Physics and Astronomy, University of Notre Dame, Notre Dame, Indiana 46556, USA ²The Joint Institution of Nuclear Astrophysics-Center for the Evolution of the Elements, University of Notre Dame, Notre Dame, Indiana 46556, USA ³Department of Physics, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701, USA ⁴South Dakota Science and Technology Authority, Sanford Underground Research Facility, Lead, South Dakota 57754, USA 200 100 Simulation $^{22}Ne(\alpha, \gamma)^{26}Mg$ Experiment ²²Ne(α,γ)²⁶Mg 80 $E_r = 830 \text{ keV}$ ${}^{20}Ne(\alpha, \gamma){}^{24}Mg$ (Background) Counts/ 50 keV ²Ne(α,γ)²⁶Mg $E_r = 650 \text{ keV}$ 60 40 50 20 9000 9500 10000 10500 11000 11500 12000 9000 9500

(in good agreement with literature)

²²Ne(α , γ)²⁶Mg reaction: competitor to ²²Ne(α ,n)²⁵Mg

(n-source for synthesis of elements with 60 < A < 90)

Energy [keV]

 γ -ray summing detector HECTOR

 \rightarrow lower depletion of ²²Ne \rightarrow enhanced production of s-process elements

SURF: Sandford Underground Laboratory at Homestake (South Dakota)

PHYSICAL REVIEW LETTERS 128, 162701 (2022)

Measurement of Low-Energy Resonance Strengths in the ¹⁸O(α,γ)²²Ne Reaction

 A. C. Dombos[®],^{1,*} D. Robertson,^{1,†} A. Simon[®],¹ T. Kadlecek,² M. Hanhardt[®],^{2,3} J. Görres,¹ M. Couder[®],¹ R. Kelmar[®],¹ O. Olivas-Gomez[®],¹ E. Stech,¹ F. Strieder[®],² and M. Wiescher¹
 ¹Department of Physics and The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, Indiana 46556-5670, USA
 ²Department of Physics, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701, USA
 ³South Dakota Science and Technology Authority, Sanford Underground Research Facility, Lead, South Dakota 57754, USA

¹⁸O(α , γ)²²Ne reaction:

feeds ²²Ne + α reaction channels

Enjoying the Scottish Lifestyle

M Aliotta The Full Scottish Attire

Nuclear Clustering and Open Questions in Astrophysics

- Cosmological Lithium Problem(s)
- Nucleosynthesis in First Stars
- Electron Screening Puzzle

Nuclear Clustering: A Possible Solution ?

Nuclear Clustering

do similar cluster resonances exist in other key nuclear reactions?

can they solve all three open questions?

The Cosmological Lithium Problem(s)

M. Aliotta Big Bang Nucleosynthesis

Primordial Nucleosynthesis (BBN) and Primordial Abundances

3 minutes after Big Bang

adapted from Fields (2011) ARNPS©

Density of Ordinary Matter (Relative to Photons)

The Cosmological Lithium Problem(s)

Primordial Lithium Abundances

M Aliotta

The Cosmic Lithium Problem: Possible Solutions

D, ³ He and ⁴ He:	good agreement
Li:	overestimated by factor 3-4!

Astrophysics:

incorrect interpretation of astronomical observation? depletion mechanisms in stars?

Nuclear physics:

wrong or incomplete nuclear reaction rates? other key reactions controlling ⁷Li yield?

Non-standard model:

current theories incorrect or incomplete?

Nucleosynthesis in First Stars

Identikit of First Stars

- formed 200-400 million years after Big Bang
- very massive (up to 100-1000 M_{\odot})

- made of primordial H and He
- no CNO to sustain star against gravity

How did first stars evolve?

- burn He via 3α ?
- form CNO nuclei?
- die as CCSN, pair production SN, or BHs?

M Aliotta First Stars and Their Imprints

First stars are difficult to observe today...

HE 1327-2326:

Nuclear Clustering: A Possible Solution?

Eur. Phys. J. A (2021) 57:24 https://doi.org/10.1140/epja/s10050-020-00339-x THE EUROPEAN PHYSICAL JOURNAL A

Regular Article - Theoretical Physics

Nuclear clusters as the first stepping stones for the chemical evolution of the universe

Michael Wiescher^{1,a}, Ondrea Clarkson², Richard J. deBoer¹, Pavel Denisenkov²

¹ Department of Physics, The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, Indiana 46556, USA

² Department of Physics & Astronomy, University of Victoria, Victoria, BC V8W 2Y2, Canada

M Aliotta **Current Status**

"run out of steam" ... further breakthrough will require new measurements UNDERGROUND

The Electron Screening Puzzle

Electron Screening Effect

in the lab and in stellar plasmas interaction affected by electrons

SCREENING POTENTIAL U_e

typically tiny amount (~ 10-100 eV)

 \Rightarrow corrections typically negligible, except at ultra-low energies

typically, experimental investigations

electron screening puzzle

M Aliotta

M Aliotta The ³He(d,p)⁴He reaction: A case study

kT [keV]

Electron Screening Anomalies

d(d,p)t reaction in different host materials

large/small compared to D_2 gas target ($U_e \cong 30 \text{ eV}$)

anomalous enhancements observed for some materials but not for others

Electron Screening: A possible solution from nuclear clustering?

The electron screening puzzle and nuclear clustering

C. Spitaleri^{a,b,*}, C.A. Bertulani^{c,d}, L. Fortunato^{e,f}, A. Vitturi^{e,f}

^a Department of Physics and Astronomy, University of Catania, Catania, Italy

^b INFN-Laboratori Nazionali del Sud. Catania. Italy

^c Department of Physics and Astronomy, Texas A&M University-Commerce, Commerce, TX 75429, USA

^d Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843, USA e Dipartimento di Fisica e Astronomia "Galileo Galilei", Università di Padova, via Marzolo, 8, I-35131 Padova, Italy

[†] INFN, Sezione di Padova, via Marzolo, 8, I-35131 Padova, Italy Uedlim U_epp Note Ref. [11] Reaction (eV) (eV) [7] [1] $^{2}H(d,t)^{1}H$ 14 19.1±3.4 [16,17] 3 [2] 3 He(d, p) 4 He 65 109 ± 9 D₂ gas target [18] [3] ³He(d, p)⁴He 120 219±7 [18] [4] 3He(3He,2p)4He 240 305±90 compilation [2] ပ^{ီသည}/ပ^{adlr} [5] ${}^{6}\text{Li}(d,\alpha)^{4}\text{He}$ 175 330±120 H gas target [19] 2 [1] [2] [3] $^{6}\text{Li}(d, \alpha)^{4}\text{He}$ 175 330±49 [6] [19,20] [12] ^[13] [7] ⁶Li(p, α)³He 175 440±150 H gas target [19] [8] ${}^{6}\text{Li}(p,\alpha)^{3}\text{He}$ 175 355±67 [19,21,22] [9] $^{7}\text{Li}(p,\alpha)^{4}\text{He}$ 175 300±160 H gas target [19] $^{7}\text{Li}(p,\alpha)^{4}\text{He}$ [10] 175 363 ± 52 [19,21,23] ${}^{9}\text{Be}(p, \alpha_0)^6\text{Li}$ 240 788±70 [24,25] [11] ${}^{10}B(p, \alpha_0)^7$ 340 376±75 [26,27] [12] ${}^{11}B(p, \alpha_0)^8Be$ [13] 340 447±67 [26,28] ٥ò 10 5 Reaction Number

(E) CrossMark

lower Coulomb barrier \rightarrow enhanced fusion

To Conclude...

Nuclear Astrophysics Deep Underground: Very Prolific Endeavor

much has been learnt and understood, but many open questions remain:

- cosmological lithium problem
- evolution of first stars
- electron screening
- how do massive stars evolve and die?
- which stars explode as supernovae and which die as white dwarfs?
- what is the core metallicity of the Sun?
- how to explain pre-solar grain anomalies?
- what is the origin of heavy elements?
- and more...

no time to relax.... yet!

Happy Birthday Michael!

