EMC Backward Endcap Status report

L.Capozza, J. Geisbüsch, R. Gowdru, S. Katilmis, F. Maas, J. Martínez, O. Noll, D. Rodríguez, <u>C. Rosner</u>, P. Schöner, S. Wolff

EMC Meeting Bochum, 6. 2. 2024

Outline

- Submodule Production
- Submodule calibration status
- Slow control
- Mechanical status
- Summary

PANDA Backward Endcap

Phase-0 Version

PANDA Backward Endcap

Submodule Production

- Submodule production: finished
- Disassembled one prototype EMC to build final 2 half subunits
- 32/32 Full subunits
- 16/16 Half subunits

- Fully automated calibration in climate chamber of:
 - Temperature sensors
 - APD gain curve
 - Energy calibration with cosmics
- All submodules through calibration process
- Analysis of calibration data and calibration in progress

Submodule Calibration: noise

- Noise characterisation by scanning the hit rate as a function of sadc threshold
- Identification of missing contact between APD and APFEL-ASIC
 - -> exclude channels from HV scan to not damage APFEL

Submodule Calibration: temperature

- 4 flat home-made pt100 per submodule to be calibrated
- 10 reference sensors around each submodule
- climate chamber set to 6 different temperatures: 20°C, 0°C, -20°C, -30°C, -25°C, 23°C
- reference values interpolated to the position of the flat sensors
- linear R(T) function calculated with two points (typically +20°C and -25°C)
- other data points used to check the accuracy
- typical accuracy: 0.1 to 0.2°C

time

Submodule Calibration: HV scans

Bias Voltage [V]

- HV scans at +20°C and -25°C
- Measurement of gain/voltage characteristics of every APD with pulsed light
- Absolute gain determination to be fixed with cosmics data
- Results approximately compatible with Bochum characterization
- Example: scan data at -25°C, three submodules,

one plot per crystal containing the curve of both APDs

- Cosmics data at -25°C with gain 200 and gain 400
- Absolute gain determination by using cosmic peak (~25 MeV)
- Here: raw data without event reconstruction
- Example: ~3 hours run at gain 400

(colours: blue+red=low gain, black+green=high gain)

pulse height [ADC channel]

- Data at gain ~400
- With event reconstruction
- At least one hit per row required
- Large reduction in noise by requiring e.g. signal in both APDs
- But: no clean landau distribution as expected, probably due to angled tracks

- Exactly 4 hits required in a column pattern
- Fit with landau distribution
- Calibration of energy/ADC channel with 25 MeV peak
- Absolute calibration of gain-bias curve of each APD
- Next steps:
 - Analyse and calibrate all submodules (gain 200 and 400)
 - Once full detector is setup, repeat cosmics measurement
 - Additional energy point by turning the detector 90° (~200 MeV)

HV distribution boards

- HV distribution boards:
 - All boards produced (only 94/100...)
 - Small issue: 2 capacitors missing on boards -> Apfel communication not working properly
 - Boards currently in "repair"
- Calibration status:
 - Calibration of HV DAQ and ADC values done
 - Current calibration delayed due to aforementioned issue

High Voltage Board Calibration of Channel 15 at +20 °C and -25 °C

- Epics integration:
 - > Fully integrated:
 - Control of high voltage crate
 - Control of low voltage crate
 - Light pulser
 - Control of Apfel preamplifier
 - Control of high voltage boards

- Epics integration:
 - > Fully integrated:
 - Control of high voltage crate
 - Control of low voltage crate
 - Light pulser
 - Control of Apfel preamplifier
 - Control of high voltage boards
 - Chiller

- Epics integration:
 - > Fully integrated:
 - Chiller
- Integration of chiller control into web interface

PRIMA Control Interface								
Start Detector Control Run Control	Data Visualisation							
Iseg High Voltage			Chiller Control					
High Voltage								
Low Voltage	EPICS connection	n status: ONLINE						
APFEL	Temperature parameters:	Pressure parameters:	General parameters:					
LED Matrix	Outflow Temperature: 23.43 °C	Outflow Pressure: 0.00 Bar	bath level: 3 [1/10]					
Traces	set Temperature: -27.00 °C	© °C set 0.00 Bar ○ Bar send	ar Pump power 1 [1/8]					
Chiller	Temperature 30.00 °C Ceiling:	≎ °C send						
	Temperature Floor: -30.00 °C	≎ °C send						
	Before starting the of -> The amount of cooling subs -> The water hoses are conner -> The cooling circuit hoses ar Cooling operation:	chiller please make sure that stance is sufficient sted, and the faucet for "vorlauf" is open re connected and there can be no leakage START STOP	t following parameters are met:					

- Detector overview implemented for:
 - Traces (baselines)
 - HV control (work in progress)
- Example: traces app, tested with 1 Full subunit (external setup) and 3 half subunits (climate chamber)

- Example: traces app, tested with 1 Full subunit (external setup) and 3 half subunits (climate chamber)
- 2D plotting for:
 - Rates

- Example: traces app, tested with 1 Full subunit (external setup) and 3 half subunits (climate chamber)
- 2D plotting for:
 - Rates
 - Baseline positions

- Example: traces app, tested with 1 Full subunit (external setup) and 3 half subunits (climate chamber)
- 2D plotting for:
 - Rates
 - Baseline positions
 - Baseline standard deviation

- Example: traces app, tested with 1 Full subunit (external setup) and 3 half subunits (climate chamber)
- Alert system:
 - Watcher which checks whether parameters are within limits

- Example: traces app, tested with 1 Full subunit (external setup) and 3 half subunits (climate chamber)
- Alert system:
 - Watcher which checks whether parameters are within limits
 - If not, acoustic and visual alerts

- Example: traces app, tested with 1 Full subunit (external setup) and 3 half subunits (climate chamber)
- Alert system:
 - Watcher which checks whether parameters are within limits
 - If not, acoustic and visual alerts
 - Controls which allow to acknowledge/ignore alerts in certain channels

rt Detector Control Run Control	Data Visualisation					
g High Voltage	#	носно			8209	
h Voltage			34 35	86	7388.1	
v Voltage	refresh(s)		4 5			
FEL	SUD # 35 load (remove) reload	0 1		8 9	6567.2	
O Matrix	Plotting		6 7		5746.3	
pes	channels plot	32 2 3		.0 11 37	4925.4	2
	scale max:					J
	dynamic scale:	32 24 25		12 13 38	4104.5	
					3283.6	
	Adjust Baselines	45 26 27		14 15 39	2462.7	
	Target position Freedom					baselines alert: channel 48
	toggle adjust 🗹 auto-calib 🗹	45 28 29	10 17 2	20 21 40	1641.8	
	new method		16 17		820.9	
	Submodule:	30 31	2	2 23	0	submodule channel 3 0-63 all ~
	adjust cancel		18 19			acknowledge ignore unignore force:
	Setup SADC		43 42 4	-1		Alerts: Baseline Alert 🔻
	Submodule:				L	
	SADC channel: program HG Threshold: 4000 threshold	crystals chans sub txt crystal txt				
	LG Threshold: 400 0 -threshold TUZ min hg: 20 0 save					
	TUZ max hg: 2000 load					
	TUZ min lg: 20 0 pushmode					
	TRL: 200 infomode					
	Sync.:					
	SADC channel: scan					
	Target rate: 50 Cancel					

- Example: traces app, tested with 1 Full subunit (external setup) and 3 half subunits (climate chamber)
- Control of multiple subunits:
 - Controlling baseline position

- Example: traces app, tested with 1 Full subunit (external setup) and 3 half subunits (climate chamber)
- Control of multiple subunits:
 - Controlling baseline position
 - Programming SADCs

- Example: traces app, tested with 1 Full subunit (external setup) and 3 half subunits (climate chamber)
- Control of multiple subunits:
 - Controlling baseline position
 - Programming SADCs
 - Automatic threshold adjustment to reach defined noise rate

PRIMA Control Interface							
Start Detector Control Run Control D	Data Visualisation						
Iseg High Voltage	#	headurat			8209		
High Voltage		L60 L61	34 35				
Low Voltage	refresh(s)	33		36	7388.1		
APFEL	sub #	0 1	4 5	8 9	6567.2		
LED Matrix	Plotting				5746.3		
Traces	channels plot	32 2 3	6 /	10 11 37	1005.4	2	
	BL means V				4925.4	3	
	dynamic scale:	32 24 25		12 13 38	4104.5		
					3283.6		
	Adjust Baselines	45 26 27		14 15 39	2462.7		
	Target position Freedom				P	baselines alert: channel 48	
	toggle adjust 🗹 auto-calib 🗹	45 28 29	16 17	20 21 40	1041.8		
					820.9	submodulo channel	
	Submodule: crystal Nr.:	30 31	18 10	22 23	0	3 0-63 all V	
	adjust cancel		- 10 13	11	Ĺ	reset watcher	
	Setup SADC	44	43 42	41		Alerts: Baseline Alert 🔻	
	Submodule:						
	SADC channel: program HG Threshold: 4000 0 +threshold	crystals chans sub txt crystal txt					
	LG Threshold: 400 ○ -threshold TUZ min hg: 20 ○ save						
	TUZ max hg: 200 ≎ load TUZ min lg: 20 ° pushmode						
	TUZ max ig: 200 0 infomode TRL: 727 0 re-init						
	Sync.:						
	SADC channel: scan						
	Target rate: 50 0 cancel Iterations: 20 0						
	Crude tuning: 🔽						

SADC firmware and DAQ status

• Dedicated talk by Olliver Noll (7.2. 9:40)

• Exit beampipe for Phase-0 experiment in production in workshop

- Exit beampipe for Phase-0 experiment in production in workshop
- Cooling system for Phase-0 setup:
 - Test setup with manifolds and chiller built in our hall

- Exit beampipe for Phase-0 experiment in production in workshop
- Cooling system for Phase-0 setup:
 - Test setup with manifolds and chiller built in our hall
 - Find leakage problems, perform measurements for bachelor thesis (Jonas Geisbüsch)

- Exit beampipe for Phase-0 experiment in production in workshop
- Cooling system for Phase-0 setup:
 - Test setup with manifolds and chiller built in our hall
 - Find leakage problems, perform measurements for bachelor thesis (Jonas Geisbüsch)
- Tests of airtightness of detector ongoing:
 - Baseplate openings sealed
 - Coverbox glued
 - Detector flooded with nitrogen with defined flowrate
 - Check flow at outflow

- Exit beampipe for Phase-0 experiment in production in workshop
- Cooling system for Phase-0 setup:
 - Test setup with manifolds and chiller built in our hall
 - Find leakage problems, perform measurements for bachelor thesis (Jonas Geisbüsch)
- Tests of airtightness of detector ongoing:
 - Baseplate openings sealed
 - Coverbox glued
 - Detector flooded with nitrogen with defined flowrate
 - Check flow at outflow
- Replacement of nitrogen system with dryed air, procurement in process

Summary

- Submodule production:
 - Finished 🗸
- Calibration of submodules:
 - 🛛 Measurements finished 🗸
 - Analysis in progress
- HV boards:
 - All boards produced, HV calibration done
 - Boards currently in repair due to minor issue
- Slow control:
 - Epics and web interface integration of chiller control finished
 - Detector overview implemented in web interface, including 2D plots, alert system and multi submodule detector controls
- Mechanical status:
 - Exit beampipe in production
 - Cooling and airtightness tests of the Phase-0 setup in

progress

Thank You!