Charmonium, glueballs and their mixing from lattice QCD

Juan Andrés Urrea-Niño, Roman Höllwieser, Jacob Finkenrath, Francesco Knechtli, Tomasz Korzec, Michael Peardon

Physics opportunities with proton beams at SIS100

Motivation + Lattice QCD FOR5269: Future methods for studying confined gluons in QCD

Spokesperson: Prof. Dr. Francesco Knechtli Collaboration between physics and applied math at BUW, DESY Zeuthen and Trinity College Dublin. Main goals:

- Glueballs in dynamical QCD.
- Disconnected contributions in charmonium.
- String breaking in hybrid potentials.
- New schemes for molecular dynamics.
- Distillation + Multigrid framework.

https://confluence.desy.de/display/for5269

► ...

Beyond the quark model (XYZ, exotic candidates)

Some observed states are not compatible with a $\bar{q}q$ composition. Alternatives (See N. Brambilla *et al.*, 1907.07583):

We need to understand the dynamics of **glueballs**, **hybrids**, etc... to better understand these states.

J. A. Urrea-Niño, Charmonium, glueballs and their mixing from lattice QCD

Motivation + Lattice QCD

Lattice QCD

Simulate QCD via Monte-Carlo methods in a Euclidean space-time lattice.

- Discretization introduces lattice spacing a.
- Quarks ψ live in lattice sites, gluons U live in links between sites.
- ▶ Lattice Dirac operator \mathbf{D} is a large but sparse matrix $(10^7 \times 10^7)$
- Action $S[\bar{\psi}, \psi, U]$ recovers correct $a \to 0$ limit.

Measure expected values of observables \mathcal{O} :

- $\langle \mathcal{O} \rangle$ gives physical information, e.g energies.
- Sample gluon configurations distributed as $\propto e^{-S}$.

Hadron spectroscopy in lattice QCD

Nature: What is the mass of a $J^{PC} = 0^{-+} \bar{c}c$ state, e.g η_c ?

- ► SO(3) reduces to cubic group \mathbb{O} : $(0^{\pm\pm}, 1^{\pm\pm}, 2^{\pm\pm}, ...) \rightarrow (A_1^{\pm\pm}, A_2^{\pm\pm}, E^{\pm\pm}, T_1^{\pm\pm}, T_2^{\pm\pm}).$
- Flavor-singlet channel is blind to quark content.

Lattice: What is the mass of a specific A_1^{-+} state?

- 1. Define $\mathcal{O}[\bar{\psi},\psi,U]$ with fixed quantum numbers, e.g meson, glueball, baryon, etc...
- 2. Calculate two-point temporal correlation function

$$\begin{split} \left\langle \mathcal{O}(t)\bar{\mathcal{O}}(0)\right\rangle &= \frac{1}{Z}\int d\psi d\bar{\psi}dU\mathcal{O}(t)\bar{\mathcal{O}}(0)e^{-S}\\ \approx \frac{1}{N}\sum_{i}\left(\ldots\right) \to \text{Monte Carlo for }\int dU\\ &= \sum_{n}|\left\langle n\right|\hat{O}^{\dagger}\left|\Omega\right\rangle|^{2}e^{-E_{n}t} \stackrel{t\to\infty}{\approx}|\left\langle 0\right|\hat{O}^{\dagger}\left|\Omega\right\rangle|^{2}e^{-E_{0}t} \end{split}$$

Motivation + Lattice QCD

Hadron spectroscopy in lattice QCD

Even better, create correlation matrix between different operators with equal quantum numbers

 $C_{ij}(t) = \left\langle \mathcal{O}_i(t)\bar{\mathcal{O}}_j(0) \right\rangle$

and solve a generalized eigenvalue problem (GEVP)

 $C(t)w_n(t,t_G) = \rho_n(t,t_G)C(t_G)w_n(t,t_G)$

to get

$$\begin{split} \rho_n(t,t_G) &\stackrel{t \to \infty}{\approx} c_n e^{-E_n t} \to \text{Energies of states} \\ \tilde{\mathcal{O}}_n &= \sum_k w_n^{(k)}(t_1,t_G) \mathcal{O}_k \to \text{Operator closest to} \left| n \right\rangle \end{split}$$

See Lüscher and Wolff (1999), Blossier et al. (2009).

Choose operator

$$\mathcal{O}(t) = \bar{c}(t)\Gamma c(t), \ \Gamma = \{\gamma_5, \gamma_i, \gamma_5\gamma_i, \nabla_i, ...\}$$

Build correlation function:

$$\begin{split} C(t) &= -\left\langle \mathsf{Tr}\left(\Gamma D^{-1}[t,0]\Gamma D^{-1}[0,t]\right)\right\rangle_{\mathsf{gauge}} \text{ Connected} \\ &+ \left\langle \mathsf{Tr}\left(\Gamma D^{-1}[t,t]\right)\mathsf{Tr}\left(\Gamma D^{-1}[0,0]\right)\right\rangle_{\mathsf{gauge}} \text{ Disconnected} \end{split}$$

Inversions D⁻¹ are the main computational cost.
 Disconnected contribution is the most expensive and noisy, being often neglected (OZI suppression).

Charmonium on the lattice

Variety of Γ :

- Several Γ for different J^{PC} can be studied on the lattice, e.g exotic 1⁻⁺.
- Gluonic excitations via $\mathbb{B}_i = \epsilon_{ijk} \nabla_j \nabla_k$, e.g 0^{++} can be $\bar{c} \mathbb{I}c$ or $\bar{c}\gamma_4\gamma_5\gamma_i \mathbb{B}_i c$ (Hybrid operator).

Improved Distillation:

- Restrict quark fields to subspace of smooth, gauge-covariant fields at each time t: range (V[t).
- Optimize the restriction for each Γ and energy level.
- ▶ Perambulators: $\tau[t_1, t_2] = V[t_1]^{\dagger} \mathbf{D}^{-1} V[t_2] \rightarrow Most$ expensive calculation!

See Phys. Rev. D 106, 034501 (2022), Phys. Rev. D 80, 054506 (2009).

Motivation + Lattice QCD

Charmonium

Glueballs

Charmonium on the lattice

 $N_f = 2$, $24^3 \times 48$ lattice, Wilson quarks at half the physical charm quark mass, 0^{-+} with $\bar{c}\gamma_5 c$.

Disconnected contribution: small magnitude, large error.

Motivation + Lattice QCD Charmonium Glueballs Mixing Conclusions

Charmonium on the lattice

- Effective mass: $am_{eff}(t) = \ln\left(\frac{C(t)}{C(t+a)}\right)$
- Small window of opportunity for flavor-singlet.

Glueballs on the lattice

Bound states of only gluons arising from their self-interaction. Experimental detection is difficult due to decays and mixing with mesons. \rightarrow "Experimentally (...) their status remains unclear and controversial" [F. Brünner and A. Rebhan, (2015)] On the lattice:

- Correlations are heavily affected by signal-to-noise problem, needing large statistics.
- Mixing with mesons makes identification difficult.

Quenched lattice QCD [C. Morningstar and M. Peardon, (1999)]: $0^{++}: 1730 \pm 80 \text{ MeV} \rightarrow f_0(1710)$? $2^{++}: 2400 \pm 120 \text{ MeV}, 0^{-+}: 2590 \pm 130 \text{ MeV}$ Glueballs are **unstable** in full dynamical QCD!

Motivation + Lattice QCD Charmonium Glueballs Mixing Conclusions

Glueballs on the lattice

- Exponential signal-to-noise problem.
- Gluonic operators see the lightest 0⁺⁺ state clearly.

Glueballs

Charmonium - Glueball Mixing

What is a pure meson/glueball state with dynamical quarks?

- Lattice gluonic $\hat{G} = \Box$ and mesonic $\bar{q}q$ operators can be in the same symmetry channel.
- $\langle \eta_c | \hat{G} | \Omega \rangle \neq 0$: Needs further disentanglement!
- A first (limited) approach:
 - \blacktriangleright Which $|n\rangle$ is more dominant in the state we create?

$$\left(\bar{q}q\right)\left|\Omega\right\rangle = \sum_{n}\left\langle n\right|\left(\bar{q}q\right)^{\dagger}\left|\Omega\right\rangle\left|n\right\rangle,\ \hat{G}^{\dagger}\left|\Omega\right\rangle = \sum_{n}\left\langle n\right|\hat{G}^{\dagger}\left|\Omega\right\rangle\left|n\right\rangle$$

If
$$\frac{|\langle n| (\bar{q}q) |\Omega \rangle|}{|\langle n+1| (\bar{q}q) |\Omega \rangle|} > 1$$
, $\frac{|\langle n| \hat{G} |\Omega \rangle|}{|\langle n+1| \hat{G} |\Omega \rangle|} < 1$
then $|n\rangle$ mostly **mesonic**, $|n+1\rangle$ mostly **gluonic**

Non-zero off-diagonals: There is mixing between operators.

 Motivation + Lattice QCD
 Charmonium
 Glueballs
 Mixing
 Conclusions

 Charmonium - Glueball Mixing

Motivation + Lattice QCD Charmonium Glueballs Mixing Conclusions

Towards a physical setup

 $N_f = 3 + 1$ at SU(3) flavor-symmetric point + 800 MeV pions

2 (heavy) pion threshold for scalar glueball \approx 1.6 GeV. Need 2-particle operators! (See 2312.16740 for other details.)

Glueballs

Conclusions and Outlook

- State-of-the-art methods are needed, particularly for flavor-singlet states: Suitable operators, improved distillation, GEVP, etc... Disconnected contributions!
- Glueball spectroscopy is a difficult hunt: SNR problem, noisy operators, cost of statistics. Disconnected-like correlations.
- Characterizing a glueball state is not easy due to hadronic decays.

Work in progress within FOR5269:

- Better operators for cc, glueballs, multi-particle states, static-light mesons, static potentials, ...
- Better methods to tackle SNR problem, e.g multi-level updates for quenched QCD in 2312.11372.
- Better methods to tackle computational bottlenecks: Solve Dx = b with very particular b.

		Conclusions

Thank you for your attention!

