

Opportunities with proton beams at SIS100, Workshop, Wuppertal, Feb. 6-9, 2024

Outline

- Why pp at SIS100?
- CBM setup
- Interaction Studies
- Baryon Spectrum (Line Shapes, PWA ..)
- Baryon Electromagnetic Structure

Why pp at SIS100?

Hyperon Physics Facilities/Experiments					
	2024	2028		2032	
p+p/A	CERN/JPARC/HADES			CBM	
<mark>p</mark> +p∕A				PANDA	
п+р/А	JPARC/HADES				
K+p/A	JPARC	KLF			
γ+p/A	MAMI/ELSA/GLueX/CLAS12		EIC		
e ⁻ +e ⁺	BESIII/BelleII				

- Abundant usage of photoproduction (and kaon induced reactions) in existing and future experiments
- Few facilities uses protons as main probe
- CERN and FAIR protons in different energy domains
- p+p reactions very important for understanding effects in heavy ion reactions
 - Need to put resources on the future p+p experiments
 - Experiments at SIS100 can operate with a proton and heavy ion beam at the same detector setups – State of the art!
 - Difficult with secondary beams or electromagnetic probes

Setup and Simulation Details

CBM

- 5 cm LH2 Target at entrance of Dipole
- Dipole
- STS (MVD...)
- RICH

TOF

- TRD Luminosity:
 - 10¹¹ 10¹² p/spill
 - FSD Interaction rates: 1-10 MHz
 - 10 s/spill
 - Duty cycle: 50%

FastSim*

- Polar angle, θ, acceptance: 2.5° 25°
- Momentum resolution:
 1.5% (p > 2.0 GeV/c) 2.0% (p < 2.0 GeV/c)
- θ and Φ resolution: 0.002 rad
- Track efficiency: 90%

[*] Developed by Klaus Götzen, now HepFastSim to be published

Possibilities with Strangeness and Charm FAR = I

- Hyperon Production
- Baryon Spectrum
 - Line shape
- Structure *i.e.* via eTFFs or FSI
- Polarization

. . . .

•	Currently available	channels at S	SIS18 up to T _{lab}	= 4.5 GeV
---	---------------------	---------------	------------------------------	-----------

- SIS100 up to T_{lab} = 29 GeV
- Many interesting hyperon channels (S = -1,-2,-3 and C = 1) opens up at larger T_{lab}
- Anti hyperons
- pp interactions important for understanding effects in heavy ion data

	reaction	\sqrt{s} (GeV)	T _{lab} (GeV)
	$pp \to K^+ \Lambda p$	2.548	1.6
SIS18	$pp \rightarrow K^+ K^- pp$	2.864	2.5
	$pp \rightarrow K^+ K^+ \Xi^- p$	3.247	3.7
	$pp \rightarrow K^+ K^+ K^+ \Omega^- n$	4.092	7.0
SIS100	$pp \rightarrow \Lambda \bar{\Lambda} pp$	4.108	7.1
	$pp \rightarrow \Xi^- \overline{\Xi}^+ pp$	4.520	9.0
V	$pp \rightarrow \Omega^- \overline{\Omega}^+ pp$	5.222	12.7
	$pp \rightarrow J/\Psi pp$	4.973	12.2

Picture credit: N. Herrmann, FAIR seminar, Krakow

T. Galatyuk, NPA 982 (2019), update 2023 https://github.com/tgalatyuk/interaction_rate_facilities

FAIR GmbH | GSI GmbH Possibilities with a Proton beam

Interaction Studies

- Neutron stars currently a very hot and interesting topic
- Hyperons energetically favorable to be created in neutron star cores
 - Reduction of Fermi pressure
 - Softer EOS
 - Lower allowed masses than those observed!
- Could solve the puzzle:
 - Three-body hyperon interactions
 - Strong repulsive YY, YN, YNN interactions
- Femtoscopy to infer correlations and scattering length
- Need pp measurements to separate the source contribution from elementary effects

Further measurements of the interactions required to constrain the EOS

N. Rathod (Warsaw University of Technology

Dalitz Plot Analysis - Conceptually

Can do more with exclusive reactions!

- Dalitz plot analysis gives access to information about
 - 3-body final states
 - Final State Interactions (*e.g.* scattering lengths, get more dynamics from the data)
 - Resonances
 - Line shapes

sensitive to interactions of all subsystems; for more than 2 final particles: Dalitz plot analysis!

Production operator weakly energy dependent; selection rules!

(isospin, parity, Pauli principle ...)

Picture Credit: Christoph Hanhart

 $\rightarrow d\sigma \propto |fM|^2$, where $M \simeq const$. and $f = f[\Psi_{ij}]$.

Λ_c -p and \overline{D}^0 -p Interaction Studies

- SIS100 energies allow for charm production channels
- SU(4) estimates for exclusive charm hyperon production up to 1 µb @ SIS100
- All final state particles reconstructed
- Good phase space acceptance of the primary particles
- Detailed studies D-p and Λ_c -pInteractions possible with femtoscopy

Expected reconstructed exclusive
events / Day @ 30 GeV/c, $\sigma = 1 \mu b$ 1 MHz $2.7 \cdot 10^4$ 10 MHz ? $2.7 \cdot 10^5$

Ab-initio calculations at low energies and perturbation calculations at high energies

Calculations describing interactions needed at intermediate energies!

- Influence of internal charm on cross section close to threshold?
- J/ψ -N interaction with multiple gluon exchange with proton
- Gives information about proton mass radius (trace anomaly)
- J/ψ -N interaction related to pentaquark searches
- Important to measure in pp-reactions to explain effects in NN-reactions

$$F_{J/\Psi N} \simeq r_0^3 d_2 \frac{2\pi^2}{27} 2M_N^2(1-b).$$

Eur. Phys. J. C (2020) 80:507

Scattering amplitude, **F**, related to r_{o} : Bohr radius of charmonium $M_{\rm M}$: nucleon mass **b**: trace anomaly contribution (sensitive to r_0) d,: Wilson coefficient

J/w total cross section

J/ψ-p Simulation Results

- Low cross sections at SIS100 energies but high reconstruction efficiencies
- Good phase space acceptance
- High expected count rates

Simulations by Ömer Penek

using FastSim

Expected reconstructed exclusive events / Day @ 30 GeV/c, $\sigma = 10^{-3} \mu b$		
1 MHz	1.6·10 ³	
10 MHz	1.6·10 ⁴	

Excited Baryon Spectrum

- Learn about the internal structure of baryons
 - Line shape measurements of resonances(Possible at SIS100 with resolution better than width)
 - Molecular states, pentaquarks ...
- Need more multi-strange excited baryon data for spin and parity assignments
 - PWA

Focus on excited Ξ^* and Ω^* states

One can resolve the shapes!

- cm energy = 7.5 GeV enough to populate higher lying resonances
- Mass resolution CBM, from MC ~2 MeV/c²

Picture credit: N. Herrmann, FAIR seminar, Krakow

S=-2 at SIS18

- Excess of sub-threshold Ξ⁻ production measured at HADES in Ar+KCl Reactions at 1.76AGeV [*] and p(3.5 GeV)+Nb collisions [**]
- Could be explained by resonances with significant branching fractions into the E- channel [***]
- Need experimental observation of $N^* \rightarrow \Xi^-K^+K^+$ in p+p reactions

S=-2 at SIS18

- Cross section estimates: 0.35 µb 3.6 µb [*]
- Main backgrounds
 - − pp → ppπ⁺π⁺π⁻π⁻ with σ = 227 µb
 - Various A and K⁰_s production channels
- Goal of Analysis
 - Total and differential cross section determination
- Preliminary results
 - > 0.4 µb can be excluded with 5 sigma
- Signal entries = entries in scaled simulation within Ξ⁻ range
- **Background entries** = entries in data within Ξ^{-} range

Possibilities with a Proton beam

At SIS100:

 $\Xi^{\scriptscriptstyle -} \to excited \; \Xi$, Ω and antihyperons

Near threshold Ξ production extended to near threshold production of excited Ξ and Ω !

S=-2 Prospects at SIS100

- Polarization (hyperons+antihyperons)
- Ξ⁻ yield is an important indicator of chiral symmetry restoration in dense matter (heavy ion reactions)
- Measurements in pp important for understanding the fundamental production at similar energies as heavy ion reactions
- High inclusive acceptance and expected count rates for Ξ⁻
 - Promising for line shape studies

 $1.2 \cdot 10^{9}$

1.2.1010

Expected reconstructed inclusive /

Day @ 30 GeV/c, $\sigma = 40 \mu b$

1 MHz

10 MHz

p_{beam} [GeV/c] Possibilities with a Proton beam

S=-3 Prospects at SIS100

- Information about in-medium properties of hadrons
- Multi-step production provides information about the EOS
- Distinguish partonic degrees of freedom vs. multi step production
- Transport model predictions of **near threshold** production shows sensitivity to multistep production
- Production in pp-collisions important for understanding effects in heavy ion collisions
- Preliminary simulations show high acceptance and count rates

PHSD W. Cassing, E. Bratkovskaya et al., Phys.Rev. C93 (2016), 014902

preliminary

$$pp \rightarrow nK^{+}K^{+}K^{+}\Omega^{-}$$
$$\Omega^{-} \rightarrow \Lambda K^{-} (BR = 68\%)$$
$$\Lambda \rightarrow p\pi^{-} (BR = 64\%)$$

 10^{-2}

 10^{-4}

0

•Ω' PHSD+CSR

• Ω' PHSD

•Ω' HSD $\bullet \overline{\Omega}^{\dagger}$ PHSD+CSR $\bullet \overline{\Omega}^{\dagger}$ PHSD

 $+\overline{\Omega}^+$ HSD

 Ω^{-}

Expected reconstructed inclusive events / day @ 30 GeV/c, σ = 0.6 µb		
1 MHz	1.4·10 ⁷	
10 MHz	1.4·10 ⁸	

sym rest (hadronic matter)

partonic dof,

"QGP"

Hyperon Electromagnetic Structure

- Dalitz decays of $\Sigma^0 \to \Lambda \gamma^* \to \Lambda e^+e^-$ not yet observed
- Low predicted brancing fraction < 5.0.10⁻³
 - Need to separate Dalitz decay contribution from conversion electron contribution at HADES
 - High luminosities and larger cross sections needed
 - SIS100 excellent for the measurements
 - FAIR GmbH | GSI GmbH Possibilities with a Proton beam

- Time like FF possible to measure for hyperon decays
- Electromagnetic structure of strange resonances, such as $\Sigma^0 \rightarrow \Lambda \gamma^* \rightarrow \Lambda e^+ e^-$
- Structure described in terms of electric and magnetic transition form factors
- Dalitz decay rates sensitive to structure

S. Leupold et al. Eur. Phys. J. A (2021) 57 :183

Hyperon Electromagnetic Structure

- Dalitz decays of $\Sigma^0 \to \Lambda \gamma^* \to \Lambda e^+e^-$ not yet observed
- Low predicted brancing fraction $< 5.0 \cdot 10^{-3}$
 - Need to separate Dalitz decay contribution from conversion electron contribution at HADES
 - High luminosities and larger cross sections needed
 - SIS100 excellent for the measurements
 - FAIR GmbH | GSI GmbH Possibilities with a Proton beam

- Time like FF possible to measure for hyperon decays
- Electromagnetic structure of strange resonances, such as $\Sigma^0 \rightarrow \Lambda \gamma^* \rightarrow \Lambda e^+ e^-$
- Structure described in terms of electric and magnetic transition form factors
- Dalitz decay rates sensitive to structure

Di-lepton Measurements at CBM

Di-Lepton Spectra important to measure for understanding properties of the medium in heavy ion reactions, contains a lot of useful information

- Contains information about
 - Chiral symmetry restoration
 - Transport properties of the medium
 - Fireball acceleration, polarization, lifetime ...
- Different contributions to the dilepton spectra
 - Freeze-out contributions (*e.g.* ρ , ω and ϕ)
 - Thermal radiation (from thermally excited hadrons from the fireball)
 - Drell-Yan processes
- Sign of chiral symmetry restoration:
 - ρ $a_{_1}$ mixing / broadening into a continuum

pp-collisions needed to understand the source of di-lepton production in heavy ion collisions!

Possibilities with a Proton beam

- Proton-proton interaction studies at SIS100 are crucial
 - Provides high luminosity of up to 10¹² protons/spill
 - Opens up many reaction channels compared to SIS18 energies
 - Explaining heavy ion reaction results
- Physics possibilities includes
 - Interaction Studies
 Investigation of Baryon Spectrum
 - Spectroscopy via PWA
 - Line shape studies
 - Baryon Electromagnetic Structure
- Preliminary simulation studies show high acceptance and yields for $\Xi^{\text{-}}, \Omega^{\text{-}}, \Lambda_{_C} D^{_0}$ and J/ψ

Thank You! Questions?

Expected reconstructed counts / Day @ 30 GeV/c for 1 MHz			
Ξ-	~ 40 µb	1.2·10 ⁹	
Ω^{-}	~0.6 µb	1.4·10 ⁷	
$p \; \Lambda_{\rm C} {\rm D}^{\rm 0}$	$\sim 0.1 \ \mu b$	2.7·10 ⁴	
pp J/ψ	~ 1 nb	1.6·10 ³	

Λ-Λ Interaction Studies

- Currently analyzed at HADES
 - 4.5 GeV kinetic beam energy
 - Complex final state, statistics of importance
 - Higher rates beneficial
 - Femtoscopy
 - ALICE and STAR has provided proof that correlations can be used to infer information about the strong interaction [*]
- ALICE [**] constrains the interaction
- Futher measurements in pp collisions needed
- Synnergies with CBM physics program

[*] Annu. Rev. Nucl. Part. Sci. 2021. 71:377–402

Fig. From: [**] Phys. Lett. B 797:134822 (2019)

laylor

Annual Winter Nuclear Physics

Hyperon Correlations

Important for understanding the strangeness content of neutron stars

Femtoscopy studies via correlation function

$$C(p_1, p_2) \equiv \frac{P(p_1, p_2)}{P(p_1) \cdot P(p_2)}$$

- Λp potential inferred from correlation function at HADES in p+Nb @ $\sqrt{S_{NN}} = 3.18 \text{ GeV} [*] \text{ (right upper$ plot)
- Need further studies in p+p and p+Ag reactions with HADES
- HADES operates at energy range close to production threshold which is beneficial for interaction studies
- Current work by N. Rathod (Warsaw University of Technology) to extract p- Λ correlations at HADES (lower plot)

