Studies of Time-Like Baryon Transition Form Factors with HADES

OUTLINE:

- Motivations of the HADES experiment.
 HADES detector.
- 3) Electromagnetic structure of baryons.
- 4) Results on baryon transition form factors from proton- and pion-induced reactions.
- 5) Studies of hyperons transition form factors.
- 6) Summary and outlook.

Π		Н	
		Ц	
	_		

HADES: exploring dense QCD matter

Observables:

- ✓ Correlations and fluctuations
- ✓ Collective effects
- ✓ Strangeness
- ✓ Dileptons (l⁺l⁻)

- ➤ Equation-of-State: First order transition ?
- ➔ Search for a critical point
- ➤ Chiral symmetry restoration
- Hadron properties in hot and dense nuclear matter
- ➔ Role of baryonic resonances, hyperons
- ➤ Complementary to SPS, RHIC,..

A+A: 1-3A GeV √s=2-2.4 GeV

HADES - High Acceptance DiEelectron Spectrometer

- ✓ SIS18 beams: protons (1-4.5GeV), nuclei (1-2AGeV), pions (0.4-2 GeV) secondary beam
- \sim Spectrometer with $\Delta M/M \sim 2\%$ at ρ/ω
- ✓ PID (π /p/K): ToF (TOF/RPC, T0 detector), tracking (dE/dx)
 - momenta, angles: MDC+ magnetic field
- e+,e-: RICH
- neutral particles: ECAL
- full azimuthal, polar angles $18^{\circ} 85^{\circ}$
- é+e- pair acceptance ~0.35

Fair-Phase0 upgrade:

- → ECAL (2017-2021)
- → RICH (2018)
- Forward Detector (2021)
- → iTOF (2021)
- → START LGAD

Emissivity of QCD matter

spectral function in VACUUM:

$$R = \frac{\sigma(e + e - \rightarrow hadrons)}{\sigma(e + e - \rightarrow \mu + \mu -)} \propto \frac{1}{M_{ee}^{2}} \operatorname{Im} \Pi_{em}$$

LMR: dileptons with M<1 GeV - spectral function saturated with vector mesons, with ρ (1⁻⁻) playing the main role

$$Im\Pi_{em}^{vac} = \sum_{\nu=\rho,\omega,\phi} \left(\frac{m_{\nu}^2}{g_{\nu}}\right)^2 ImD_{\nu}^{vac}(M)$$

In medium ρ spectral function

In medium ρ spectral function – connection to baryon Dalitz decay

<u>Nuclear matter</u>: additional terms (ρ self-energies) dominant role of baryonic resonances R (Δ , N(1520),)

 dedicated HADES hadron physics program to study Dalitz decays in NN and πN collisions

8

• Np and Ny couplings

used in calculations of in-medium spectral functions

 $\prod_{\rho}^{\gamma} \prod_{\rho}^{\rho} \prod_{\rho}^{h_2} \Gamma_{\rho}^{VDM2} = \left(\frac{M_0}{M}\right)^3 \Gamma_{\rho}^0 \qquad \begin{array}{l} \text{Sakurai, Phys. Rev 22 (1969) 981} \\ \text{M. I. Krivoruchenko et al.,} \\ \text{Ann. Phys. 296, 299 (2002)} \end{array}$

hadrons 🔶 photons

Baryons Dalitz decays – (Hades), calculations of eTFF based on VMD:

• Np coupling

R- γ^* vertex

→ QED "point-like"

used in HI transport models

 $\Gamma_{\rho}^{VDM1} = \left(\frac{M}{M}\right) \Gamma_{\rho}^{0}$

etFF of baryons: models

Covariant quark model +VMD T. Pena & G. Ramalho

N-Δ(1232): *Phys.Rev.* D93, 033004 (2016) N-N(1520): *Phys. Rev.* D95, 014003 (2017) N-N(1535): *Phys.Rev.* D101, 114008 (2020)

Dispersion theory S. Leupold et al.

S. Leupold *arXiv:2401.17756 (2024)*

Two-component Lagrangian model

M. Zetenyi & G. Wolf

PRC 86, 065209 (2012) PRC 104, 015201 (2021)

microscopic calculations of $\pi N \rightarrow \ Ne+e-$

baryon resonances

Meson cloud effect

Δ (1232) resonance - exclusive pe+e- analysis

HADES: Phys. Rev. C 95, 065205 (2017)

effective eTFF

Dalitz decay studies of heavier baryons

HADES: EPJ A50, 82 (2014)

$pp \rightarrow ppe^+e^- @3.5 \text{ GeV}$

Pion beam facility @ GSI

Eur. Phys. J. A 53, 188 (2017)

- 2-pion channels: $\pi^- p \rightarrow n \pi^+ \pi^-$, $\pi^- p \rightarrow p \pi^- \pi^0 (\sqrt{s} = 1.46 1.55 \, GeV)$
 - complete the very scarce pion beam data base for hadronic couplings
- dilepton channel R → Ne+e-, never measured in pion induced reactions - time-like electromagnetic structure of baryons

reaction N+Be, 8-10*10¹⁰ N₂ ions/spill (4s)
secondary π with I ~ 2-3 10⁵/s
p = 650, 685, 733, 786 (+/-1) MeV/c
PE (CH₂)_n and C targets
in target

2-pion production in π -p

HADES: Phys. Rev. C 102, 024001, (2020)

Bn-Ga PWA: pwa.hisp.uni-bonn.de

2π data	include	ed in t	the fit
Reaction	Observable	W (GeV)	
$\gamma p ightarrow \pi^0 \pi^0 p$	DCS, Tot	1.2 - 1.9	MAMI
$\gamma p o \pi^0 \pi^0 p$	\mathbf{E}	1.2 - 1.9	MAMI
$\gamma p ightarrow \pi^0 \pi^0 p$	DCS,Tot	1.4 - 2.38	CB-ELSA
$\gamma p ightarrow \pi^0 \pi^0 p$	P, H	1.45 - 1.65	CB-ELSA
$\gamma p o \pi^0 \pi^0 p$	T, P_x, P_y	1.45 - 2.28	CB-ELSA
$\gamma p ightarrow \pi^0 \pi^0 p$	P_x, P_x^c, P_x^s (4D)	1.45 - 1.8	CB-ELSA
$\gamma p o \pi^0 \pi^0 p$	$P_{y}, P_{y}^{c}, P_{y}^{s}$ (4D)	1.45 - 1.8	CB-ELSA
$\gamma p ightarrow \pi^+\pi^- p$	DCS	1.7 - 2.3	CLAS
$\gamma p ightarrow \pi^+\pi^- p$	I^c, I^s	1.74 - 2.08	CLAS
$\pi^- p ightarrow \pi^0 \pi^0 n$	DCS	1.29 - 1.55	Crystal Ball
$\pi^- p \to \pi^+ \pi^- n$	DCS	1.45 - 1.55	HADES
$\pi^- p o \pi^0 \pi^- p$	DCS	1.45 - 1.55	HADES

unique data set

ρ meson production:

• s-channel D₁₃ (N(1520) 3/2⁻)

dominant contribution

- N(1520) \rightarrow N ρ BR=12.2 +/- 2 %
- N(1535) \rightarrow N ρ BR=3.2 +/- 0.6 %

reference ρ mass spectrum for e+e- analysis

Selection of quasi-free $\pi^- p \rightarrow ne+e-$

HADES Coll. arXiv:2205.15914 [nucl-ex] HADES Coll. arXiv:2309.13357 [nucl-ex]

10 a) $\pi^{-}+CH_{2}\rightarrow e^{+}e^{-}X$ CH, cut on invMe⁺e⁻ >140 MeV (π^0 removed) $p_{\pi} = 685 \text{ MeV}/c$ $d\sigma/dM_{miss}$ ([nb] / (MeV/ c^2) $M_{\rm ee} > 140 \; {\rm MeV}/c^2$ selection of π -p \rightarrow ne+e- exclusive channel using **missing mass cut** (η removed) * * • quasi-free treatment of π -C interaction C → e⁺e⁻ X $d\sigma/dM_{ee} \left(nb/(MeV/c^2) \right)$ $\pi^-+CH_2 \rightarrow e^+e^-X$ $p_{\pi} = 685 \text{ MeV}/c$ 900<M_{miss}<1030 MeV/c² 3 $\pi^-+p \rightarrow e^+e^-X$ $\pi^0 \rightarrow \gamma e^+e^-$ C) $\pi^{-}+p \rightarrow n e^{+}e^{-}$ (QED) sum total p 2 n e⁺e⁻ $n \eta [\eta \rightarrow \gamma e^+ e^-]$ 200 400 600 0 $M_{\rm ee} \,({\rm MeV}/c^2)$ 800 1000 1400 1200 $M_{\rm miss}~({\rm MeV}/c^2)$

Effective time-like transition form factor

HADES Coll. arXiv:2205.15914 [nucl-ex] HADES Coll. arXiv:2309.13357 [nucl-ex]

- M_{ee} < 200 MeV/c² data consistent with QED
- strong excess at large M_{ee} (up to factor 5)

- VMD2 (strict VMD) overestimates data below 400 MeV (used in HI transport models)
- 2-component VMD (VMD1) gives reasonable description
- Lagrangian model very promising
- Time-like FF dominant pion cloud contribution (pion emFF)

 $\Gamma_{0}^{VDM2} = \left(\frac{M_{0}}{M}\right)^{3} \Gamma_{0}^{0}$

 $\Gamma_{\rho}^{VDM1} = \left(\frac{M}{M_0}\right) \quad \Gamma_{\rho}^0$

Virtual photon polarization

E. Speranza et al. Phys. Lett. B764, 282 (2017)

angular distribution of e+e- \rightarrow polarization of $\gamma^* \rightarrow$ spin density matrix elements

$$\pi \mathbf{N} \to \mathbf{N} \boldsymbol{\gamma}^* \to \mathbf{N} \mathbf{e}^+ \mathbf{e}^- \qquad \frac{d^3 \sigma}{dM_{ee} d\Omega_{\gamma_*} d\Omega_e} \sim |\mathbf{A}|^2 = \frac{e^2}{Q^4} \sum_{\Lambda \Lambda'} \rho_{\Lambda \Lambda'}^{(H)} \rho_{\Lambda \Lambda'}^{(dec)} \quad \mathbf{Q} \mathbf{E} \mathbf{D} \colon \boldsymbol{\gamma}^* \to \mathbf{e}^+ \mathbf{e}^-$$

Angular distribution of the lepton pair:

$$|A|^2 \propto 8k^2 \left[1 - \rho_{11} + (3\rho_{11} - 1)\cos^2\Theta + \sqrt{2}Re\rho_{10}\sin 2\Theta\cos\phi + Re\rho_{1-1}\sin^2\Theta\cos 2\phi\right]$$

- → $\rho_{\Lambda\Lambda}$ depends on γ^* polarization
- → $\rho_{\Lambda\Lambda}$ are combination of G_E , G_M , G_C
- → the angular distribution is sensitive to J^P of the resonance
- \rightarrow can be obtain from fit to the experimental angular distribution

Virtual photon polarization

HADES Coll. arXiv:2205.15914 [nucl-ex]

 $|A|^{2} \propto 8k^{2} \left[1 - \rho_{11} + (3\rho_{11} - 1)\cos^{2}\Theta + \sqrt{2}Re\rho_{10}\sin 2\Theta\cos\phi + Re\rho_{1-1}\sin^{2}\Theta\cos 2\phi\right]$

 SDME ρ₁₁, ρ₁₀, ρ₁₋₁ extracted from experiment taking into account acceptance and efficiency (A. Sarantsev) in 3 bins in cosθγ*

etFF of hyperons

etFF of hyperons model predictions for the Dalitz decay

etFF of hyperons model predictions for the Dalitz decay

21

eTFF of hyperons with HADES pp @ 4.5GeV

HADES: Eur. Phys. J. A57, 138 (2021)

February 2022: beam time at SIS18 FAIR-Phase0

- $\Lambda(1405), \Lambda(1520), \Xi$ production cross sec., decays,...
- Σ , $\Lambda(1405)$, $\Lambda(1520)$ **Dalitz decays** \rightarrow attempt to measure upper limits of branching ratios (obtained luminosity L~6 pb⁻¹)
- the BR important information for future measurement @CBM and other hyperon factories
- information on hyperon structure, role of pion/kaon cloud

CBM@ SIS100 pp @ 30 GeV

- prod. cross sec. higher than at SIS18: σ (Σ^*, Λ^*) ~1 mb
- much higher luminosity

eTFF of hyperons with HADES pp @ 4.5GeV

HADES: Eur. Phys. J. A57, 138 (2021)

OUTLOOK

HADES Physics Program with Pion Beams

explore the 3rd resonance region $\sqrt{s} = 1.7$ GeV/c²

High statistics beam energy scan: continuation and extension to 3rd resonance region

1) Baryon-meson couplings:

- \rightarrow ππN, ωn, ηn, K⁰Λ, K⁰Σ, ... including neutral mesons (ECAL),
- → ρR couplings S31(1620), D33(1700), P13(1720),...
- 2) **Time-like em. baryon transitions**
 - $\rightarrow \pi^{-}p \rightarrow ne+e-,$
 - \rightarrow test of VMD for ρ and ω ,
 - \rightarrow spin-density matrix elements,
- 3) Cold nuclear matter studies:
 - $\rightarrow \omega$ absorption
 - $\rightarrow \rho$ spectral function
 - \rightarrow strangeness production

Summary

- HADES & pion beam is an unique tool to understand in details baryon-ρ couplings:
 - → significant off-shell contribution originating from N(1520)D₁₃ shown by combined PWA (D₁₃(1520) coupling to ρ -N: 12+/-2 %),
 - → improved knowledge of baryon resonances- meson (ρ) couplings (new BR measurements),
 - → very new information on electromagnetic baryon transitions in the time-like region,
- First test of Vector Dominance Model below 2π threshold and time-like electromagnetic transition form factor models
 - \rightarrow important inputs for medium effects of ρ meson calculations
- Studies of etFF of hyperons in pp@ 4.5 GeV.
- Proposal for pion beam experiment in 2025 in the third resonance region.
- Studies of hyperon structure @CBM.

Thank You for Your Attention !

Selection of quasi-free $\pi^- p \rightarrow ne+e-$

- cut on $invMe^+e^- > 140$ MeV (above π^0 mass)
- missing mass cut on $\boldsymbol{M}_{_{miss}}(\eta \text{ removed})$

- $\pi^{-}C$ simulations using Pluto (qfs participant-spectator model)
- production cross sec. on C for: π^0 , η , ρ , γ deduced from the scaling: $R_{C/H} = \sigma_C / \sigma_H$
- **CH**₂ target:

$$\left(\frac{d\sigma}{dM_{ee}}\right)_{CH_2} = \left(\frac{d\sigma}{dM_{ee}}\right)_C + 2\left(\frac{d\sigma}{dM_{ee}}\right)_H$$

$\Gamma(N(1520) ightarrow \Delta(123))$	$(2)\pi$, $S{-wave})/\Gamma_{ m total}$
VALUE (%)	DOCUMENT ID
12.1 ± 2.1	ADAMCZEWSKI- 2020
$\Gamma(\mathit{N}(1520) ightarrow \mathit{\Delta}(123)$	$2)\pi$, $D{-}wave)/\Gamma_{ m total}$
VALUE (%)	DOCUMENT ID
6 ± 2	ADAMCZEWSKI- 2020
$\Gamma(\ N(1520) o N ho$, S :	=3/2 , $S-wave)/\Gamma_{total}$
11 8 +1 9	ADAMCZEWSKI- 2020
$\Gamma(\ N(1520) o N ho$, S = VALUE (%)	=1/2 , $D{-}wave)/\Gamma_{ m total}$ DOCUMENT ID
0.4 ± 0.2	ADAMCZEWSKI- 2020
$\Gamma(\ N(1520) o N\sigma\)/1$	Ctotal
VALUE (%)	DOCUMENT ID
7 + 3	ADAMCZEWSKI- 2020

ρN coupling not present in PDG since 2016

$\Gamma(N(1535) \to \Delta(12$	$(32)\pi$, $D{-}wave)/\Gamma_{ m total}$
VALUE (%)	DOCUMENT ID
3 ± 1	ADAMCZEWSKI- 2020

$\Gamma($ $N(1535) ightarrow N ho$, $S=1/2)/\Gamma_{ m total}$		
VALUE (%)	DOCUMENT ID	
2.7 ± 0.6	ADAMCZEWSKI- 2020	

$\Gamma(\mathit{N}(1535) ightarrow \mathit{N} ho$, S=3/2 , $D{-}wave)/\Gamma_{ m total}$		
VALUE (%)	DOCUMENT ID	
0.5 ± 0.5	ADAMCZEWSKI- 2020	