COLD MATTER STUDIES WITH HADES AND CBM

Joachim Stroth

Physics opportunities with proton beams at SIS100

Wuppertal University

February 6–9, 2024

Breakthrough in slow extraction at SIS18

For the first time, the new regulated knock-out extraction was turned on at SIS18

- Electrostatic septum is regulated using the actual beam intensity measured with HADES T0 detector
- Carbon beam at 0.8 A GeV (~2 10⁶ Hz) directed to HADES target

Congratulations to Rahul Singh, Philipp Niedermayer, Peter Forck and the whole team (BEA)

HADES/CBM MOTIVATION

6 S II

Exploring the QCD phase diagram

- Astrophysical relevance
 - Hadronization in the early universe
 - Neutron stars
 - Neutron star mergers

IQCD / χEFT landmarks

- Chiral cross over at $\mu_B = 0$ with pseudo critical temperature ($T_c = 154(9)$ MeV)
- Chiral condensate
- "Observations"
 - Freeze-out conditions (SHM)
 - "Mean" fireball temperatures ("Planck" radiation)
 - Liquid gas phase transition

• Conjectures

- 1st order chiral/deconfinement phase transitions @ high μ_B
- Exotic phases
- (U-)RHIC)range

Hadron spectrum and QCD condensates

- Dynamical mass generation due to spontaneous symmetry breaking:
 - · Hadron mass: breaking of scale invariance (trace anomaly)
 - Parity splitting, Goldstone modes: breaking of χ symmetry

G. Baym, QNP2018

G S I

Thermal radiation and chiral symmetry restoration

- Strong excess due to ρ baryon coupling in the LMR
- Direct measurement (no blue-shift) of the emitting temperature in the IMR (black-body radiation))
- Strong broadening of in-medium ρ spectral function link to χ symmetry restoration?

Thermal dileptons Au+Au 1.23A GeV (HADES)

Extraction of the excess radiation

Pre-equillibrium from reference measurements Hadronic cocktail from $\pi^{(-)}$ or $\gamma\gamma$ measurement Implicit scaling to π^{0} yield

COLD-MATTER – LIGHT QUARKS

Vector mesons in cold matter

- Ideal probe to monitor possible mass shifts
- Low relative momentum to medium needed to increase sensitivity

HADES, PLB 715 (2012)

ϕ production in $\pi + A$ collisions (HADES Collaboration)

11

o Evidence for substantial absorption in cold matter

• Earlier decoupling in ultra-relativistic HIC!?

ϕ transparency in p+A collisions (ANKE Collaboration)

 Momentum depended production cross section off targets with different size

February, 2024

- Interpretation in terms of absorption needs models:
 - In-medium spectral function and $pN \rightarrow \phi pN$ $\Delta N \rightarrow \phi pN$ Phys. Rev. C 71, 065202 (2005)
 - In-medium spectral function and $pN \rightarrow \phi pN$ $\pi N \rightarrow \phi N$ J. Phys. G 36, 015103 (2009)
 - Adjustable in-medium cross section and transport (GiBUU)

ANKE arXiv:1201.3517 HADES W/C arXiv:1812.03728

The GSI pion beam facility

- So far, only one longer run at reduced intensity due to radiation safety issues (2014)
- Accelerator department implemented five different measures to mitigate the radiation level
- December 2023 successful test of pion production with 8×10^{10} N ions per spill \rightarrow expect intensities as shown on the plot

February, 2024

GOETH

UNIVERSITA

"Recoil-less" vector meson production

\circ Second motivation for HADES

Motivated pion-beam facility at GSI

HADES Collaboration et al. (1996) Published in: Acta Phys. Polon. B 27 (1996) 2959-2963; Contribution to: MESON 96

HSD: E. Bratkovskaya, W. Cassing Phys.Rep. 308 (1999) 65

14

February, 2024

GOETHI

UNIVERSIT

 $\pi^- + p \to n + e^+ e^- \ (\sqrt{s} = 1.49 \text{ GeV})$

Resonance-Dalitz decay (a la VMD) ...

... is analogous to baryonic contribution to in-medium ρ self energy (**emissivity**)

Effective **transition form factor** (time-like) extracted by subtracting QED expectation from exclusive invariant mass distribution.

COLD MATTER – HEAVY QUARKS

Charmonium and open charm as probe for strong-interaction matter

Key observable \rightarrow charmonium / open charm (ratio of multiplicities) [e.g. A. Andronic, Eur. Phys. J. C 76 (2016) 3]

o Uncertainties in modelling multiplicities in URHIC:

- quasi-bound states in QGP / regeneration [e.g. X. Du and R. Rapp, Phys. Lett. B 834 (2022)]
- dissociation by co-movers
- nuclear partition functions
- Cold nuclear matter (CNM) effects
 - production mechanism in the non-perturbative regime (also pp)
 - propagation in cold matter
 - formation time effects

Conclusion slide from Helmut Satz

CBM can provide unique opportunity for pioneering studies of

o charm production

- o charmonium formation
- in normal and compressed nuclear matter

In all cases, need p-p as reference, and all reactions should be studied at the sam collision energy

time evolution of J/ψ formation

0.05 fm		0.25	fm
hard	pre-resona	ance	resonance
$\tau_{c\bar{c}} = 1/2m_c$		$\tau_8 = 1$	$\sqrt{2m_c\Lambda_{qcd}}$

		shop: Heavy	flavor physics with CBM	
-28 May 2014 AS pe/Berlin timezone				
verview all for Abstracts Imetable ontribution List uthor index ook of Abstracts egistration	The aim of the workshop is to disc discuss this issue accounting for a constraints imposed by experimen Among the topics discussed will b -Theory predictions for CBM -Performances and limits of CBM -Measurements required to judge -Technological options to realize The format of the workshop will le	uss the case of charm rguments from the sic t and technology. e: the validity of differen those measurements t room for detailed dise	and open charm physics at CBM. We intend t le of theoretical physics as much as for t physics models cussions.	D
ist of registrants	Starts May 26, 2014, 8:35 AM Ends May 28, 2014, 2:15 PM Europe/Berlin	Ŷ	FIAS Lecture Hall 100 Ruth-Mourfang-Straße 1, D-60438 Frankfurt am Main, Germany	
p —	f _p (g)			
	hard	pre-	resonance	J

С

 $f_p(g)$

p

Simulation of charmonium production at FAIR energies

Simulation studies by:

P. P. Bhaduri, M. Deveaux and A. Toia

Simulation assumes perturbative cross sections and other "simplifications" \rightarrow proof of principle

[J.Phys.G 45 (2018) 5, 055103]

Open-charm measurements

Cross section unknown at SIS100 energies,

proton beam $\sqrt{s_{\rm NN}} < 8 {\rm ~GeV}$

p+A runs

- o Establish excitation function for charm production at these energies
- o System size dependence to add to the question of transition from partonic to hadronic picture

o Additional data address formation time

MVD and charm

Radiation dose (assume CBM year 5×10^6 s) Au+Au (1 % target) with 10 A GeV at 10^7 ions/s

- Include δ electrons
- \bullet Dominated by ionization damage. Up to \rightarrow 5 Mrad
- Lower energies with reduced magnetic field lead to less radiation damage
- p+Au (1 % target) at with 30 A GeV at 10^9 ions/s
 - Main damage by small angle scattering of beam protons
 - Dominated by bulk damage: Up to $\rightarrow 7 \times 10^{13} n_{\rm eq}/{\rm cm}^2$

Beam halo events

- Will dependent on beam quality (request)
- Detectors can be moved in stand-by position (5 cm away perpendicularly to the beam)

SEU / Latch-up

- Currently under investigation in mCBM
- Triple-redundancy logic in digital part
- Fast reconfiguration in spill breaks

Summary

Two main topics for cold matter studies:

- Reference measurements for heavy-ion / hot and dense matter observables
- Vector mesons in-medium & charm/strangeness production and propagation
- Not discussed: Short Range Correlations ($p_{\rm p} < 5~{\rm GeV}/c$) (SIS18 ok)

