

erc

Intrinsic Charm in the Proton

CoE

Felix Hekhorn

Physics opportunities with proton beams at SIS100, February 2024

Overview

- 1. Fitting PDFs as e.g. in NNPDF4.0 [EPJC82.428]
- 2. Evidence for intrinsic charm quarks in the proton [Nature608.483]
- 3. The intrinsic charm quark valence distribution of the proton [2311.00743]
- 4. Summary

Fitting PDFs as e.g. in NNPDF4.0 [EPJC82.428]

Parton Distribution Functions

Parton Distribution Functions (PDF) $\mathbf{f}(x, \mu_F^2)$

- universal functions to describe high-energy QCD scattering
- describe the fundamental constituents of the proton: quarks, gluons
- μ_F-dependence: DGLAP equations!
- x-dependence: fit!

How to fit a PDF? Use Machine Learning!

Methodology:

$\left\{B_{\mathcal{E},QED}^{(0)}(x_1k_1)\left(\ln\left(\frac{s_1^2}{m^2/(m+m^2)}\right) - \ln(\mu_F^2/m^2)\right) - 2B_{\mathcal{E},QED}^{(1)}(x_1k_1)\right\}\right\}$ $+ C_A \frac{\kappa_4}{2\pi (\kappa_+ + m^2)} \left(\int d\Omega_n R_{\beta,OK} \right)^{finite}$ $+2C_F \frac{s_4}{2\pi(s_1+m^2)} \int d\Omega_4 R_{\delta,QED}$

Theory:

 $s^{\prime 2} \frac{d^{2} \sigma_{\vec{s}, bb', g}^{(1), H, fin}}{dt, du,} = \alpha \alpha_{s} g_{b, Q}^{s_{1}} g_{b', Q}^{s_{2}} K_{g\gamma} N_{C} C_{F} \left[-\frac{2}{n_{c}} P_{s_{1}, gg}^{H}(x_{1}) \right]$

taken from [1910.01536]

Experiment:

(5.36)

PT [GeV]	Dimuon cross section (pb)	Dielectron cross section (pb)	Dilepton cross section (pb)
0.1.0	8.8945 28.2995	9.0342 16 29996	9.2821 20.29778
1.0 - 2.0	23.05 39.41991	23.432 parserr	22.786 20.74995
2.0 - 3.0	31.799 20.04297	32.848 alour	32,062 20.36367
3.0 - 4.0	35.663 anner	37.025 xx.xmx	36.225 илина
4.0 - 5.0	35.455 ex.weise	37.570 xka706	35.852 11.0011
5.0 - 6.0	35.099 sa.wass	36.201 xxxxx	35.573 11.8346
6.0 - 7.0	33.322 ps.erree	34.275 xx.0019	33.547 20.96264
7.0 - 8.0	30.967 28.0023	32.2 xx.0003	31.324 реживы
8.0 - 9.0	20.702 an.mean	25.834 percent	29.089 as arres
9.0 - 10.0	20.009 +0.0120	27.309 manna	20.933 as.Nets

taken from [JHEP12.061]

taken from [EPJC82.428]

repeat until converged:

guess candidate PDF $f(Q_0^2) \rightarrow$ compute theory predictions $T \rightarrow$ compare to data D

NNPDF4.0 [EPJC82.428]

- ho~ \sim 4500 data points from \sim 90 datasets
- use NNLO pQCD predictions
- ► fit 8 independent functions in NN: $g, u, \bar{u}, d, \bar{d}, s, \bar{s}, c^+ = c + \bar{c}$
- fitting scale
 - $Q_0 = 1.65\,{
 m GeV} > m_c = 1.51\,{
 m GeV}$
- uncertainties via MC replicas
- typical uncertainties in data region: singlet ~ 1%, non-singlet ~ 2 - 3%
- checks: closure tests [EPJC82.330] + future tests [APhysPolB.52.243]

Evidence for intrinsic charm quarks in the proton [Nature608.483]

What is intrinsic charm?

- ▶ NNPDF4.0 determines the total charm distribution $c^+ = c + \bar{c}$
- fitted charm is an arbitrary mixture of

perturbative charm

- fully perturbative, i.e., predictable at all scales
- generated by perturbative radiation
- always present above heavy quark threshold

non-perturbative charm

- intrinsic charm
- part of the static proton wave functions
- present at all scales

some use a model for intrinsic charm (e.g. [BHPS]), but we don't!

Strategy

Discovery of intrinsic charm

- we find a peak for intrinsic charm
- for $x \le 0.2$ the perturbative uncertainties are quite large
- the carried momentum fraction is within 1%

Data driven intrinsic charm vs. models

[BHPS] or [Meson/Baryon Cloud Model]

- we find a peak for intrinsic charm
- for $x \le 0.2$ the perturbative uncertainties are quite large
- the carried momentum fraction is within 1%

Z+charm @ LHCb [PRL128.082001]

- assuming intrinsic charm predicts better recent measurement
- reweighting is consistent

Significance

- we find a 3σ evidence of intrinsic charm
- result is stable with mass variation, dataset variation

The intrinsic charm quark valence distribution of the proton [2311.00743]

Fitting the valence charm distribution

- fit in addition valence charm distribution $c^- = c \bar{c}$
- perturbative charm comes from pair production
- $ightarrow \Rightarrow$ asymmetric charm must be intrinsic

Measuring the valence charm distribution

Charm asymmetries in Z+c @ LHCb

Measuring the valence charm distribution

Charm asymmetries in Z+c @ LHCb

Summary

Summary

- we fit charm to experimental data
- we remove perturbative charm component
- intrinsic charm is non-zero with 3σ significance
- more data $\rightarrow c^+$ with 5 σ significance
- finding a valence charm distribution signals intrinsic charm
- with current data we can not give a clear answer
- we need experimental measurements sensitive to valence charm

Summary

- we fit charm to experimental data
- we remove perturbative charm component
- intrinsic charm is non-zero with 3σ significance
- more data $\rightarrow c^+$ with 5 σ significance
- finding a valence charm distribution signals intrinsic charm
- with current data we can not give a clear answer
- we need experimental measurements sensitive to valence charm

Danke! Thanks! Kiitos!

Backup slides

Data: History

Methodology: Replicas

- Data is given by central values and covariance matrix
- generate Monte Carlo data replicas which as an ensemble represent the experiment
- fit one PDF replica to each data replica
- \Rightarrow ensemble of PDF replica

New Theory Prediction Pipeline Pineline [2302.12124]

Produce FastKernel (FK) tables!

The workhorse in the background: PineAPPL

Checks: Future Tests [Acta Phys.Polon.B52.243]

 χ^2/N (only exp. covmat) (dataset) NNPDF4.0 pre-LHC pre-Hera pre-HERA 1.09 1.01 0.90 pre-LHC 1.21 1.20 23.1 NNPDF4.0 1.29 3.30 23.1

Go to the past and look into the (back then) future!

Checks: Future Tests [Acta Phys.Polon.B52.243]

 $\chi^2/$ N (exp. and PDF covmat)

(dataset)	NNPDF4.0	pre-LHC	pre-Hera
pre-HERA			0.86
pre-LHC		1.17	1.22
NNPDF4.0	1.12	1.30	1.38

Go to the past and look into the (back then) future!

- without data PDF errors have to be big
- with PDF errors the total uncertainty increases, and accommodates for difference between predictions and new data

Checks: Closure Tests [EPJC82.330]

Fake a universe with known input assumptions

- 1. Assume a "true" underlying PDF (e.g. a single PDF replica)
- 2. Produce fake data distributed accordingly
- 3. Perform a fit to this fake data

Observe statistical estimators (e.g. bias and variance) \rightarrow Is the truth within one sigma in 68% of cases?

 $\frac{\sqrt{\text{bias/variance}}}{1.03 \pm 0.05} \qquad \frac{\xi_{1\sigma}^{(\text{data})}}{0.68 \pm 0.02}$

QCD Evolution

For (forward) evolution across a matching scale μ_h^2 :

$$\tilde{\mathbf{f}}^{(n_f+1)}(\mu_{F,1}^2) = \tilde{\mathbf{E}}^{(n_f+1)}(\mu_{F,1}^2 \leftarrow \mu_h^2) \mathbf{R}^{(n_f)} \tilde{\mathbf{A}}^{(n_f)}(\mu_h^2) \tilde{\mathbf{E}}^{(n_f)}(\mu_h^2 \leftarrow \mu_{F,0}^2) \tilde{\mathbf{f}}^{(n_f)}(\mu_{F,0}^2)$$
(1)

with $\mathbf{R}^{(n_f)}$ a flavor rotation matrix and $\tilde{\mathbf{A}}^{(n_f)}(\mu_h^2)$ the operator matrix elements (partially known up to N³LO)

for backward evolution:

- ▶ invert $\tilde{\mathbf{E}}^{(n_f)}$: simple (invert RGE flow) \checkmark
- invert $\mathbf{R}^{(n_f)}$: simple (static matrix) \checkmark
- invert $\tilde{\mathbf{A}}^{(n_f)}$: expanded or exact

EMC [NPB461.181]

- ▶ direct measurement of *F*^c₂
- evidence for intrinsic charm claimed, but experiment disputed
- adding EMC data is consistent

IC vs. PC

IC - uncertainties splitted

IC - dataset variation

IC - mass dependency

