Perspectives of electroweak transition form factor studies with hyperons

Stefan Leupold

Uppsala University

Wuppertal, Feb. 2024

Table of Contents

2 Lattice QCD and (dispersively modified) chiral effective field theory (dim χ EFT)

Understanding the strong interaction

model-independent methods to explore QCD (and in general QFT):

- perturbative QCD
 - works at high energies where strong interaction is weak
- lattice QCD
 - works best around $\Lambda_{
 m QCD}$, m_s (hadronic scale pprox 1 GeV)
 - light pion sees itself around the torus if volume is too small
 - but advantage: quark masses can be varied
- (chiral) effective field theory ~> works at low energies
- dispersion theory ~> works if there are only a few channels

Understanding the strong interaction

model-independent methods to explore QCD (and in general QFT):

- perturbative QCD
 - works at high energies where strong interaction is weak
- lattice QCD
 - works best around $\Lambda_{
 m QCD}$, m_s (hadronic scale pprox 1 GeV)
 - light pion sees itself around the torus if volume is too small
 - but advantage: quark masses can be varied
- (chiral) effective field theory ~> works at low energies
- dispersion theory ~ works if there are only a few channels
- experiment!

Understanding the strong interaction

model-independent methods to explore QCD (and in general QFT):

- perturbative QCD
 - works at high energies where strong interaction is weak
- lattice QCD
 - works best around $\Lambda_{
 m QCD}$, m_s (hadronic scale $pprox 1\,{
 m GeV}$)
 - light pion sees itself around the torus if volume is too small
 - but advantage: quark masses can be varied
- (chiral) effective field theory ~> works at low energies
- dispersion theory ~> works if there are only a few channels
- experiment! ~> but quark masses fixed

Play it again, Sam

- we are all interested in exploring strongly interacting matter
- $\,\hookrightarrow\,$ composite structures formed by quarks and gluons
- $\,\hookrightarrow\,$ form factors are introduced to characterize composite objects

Play it again, Sam

- we are all interested in exploring strongly interacting matter
- $\,\hookrightarrow\,$ composite structures formed by quarks and gluons
- $\,\hookrightarrow\,$ form factors are introduced to characterize composite objects
- \hookrightarrow but we have heard all this several times ...

Play it again, Sam

- we are all interested in exploring strongly interacting matter
- $\,\hookrightarrow\,$ composite structures formed by quarks and gluons
- $\,\hookrightarrow\,$ form factors are introduced to characterize composite objects
- \hookrightarrow but we have heard all this several times ...

• here is another motivation

- explore neutrino oscillations, CP violation in lepton sector, ...
- want to count how many neutrinos one has (of specific type and at specific distance)

- explore neutrino oscillations, CP violation in lepton sector, ...
- want to count how many neutrinos one has (of specific type and at specific distance)
- \hookrightarrow need to know how many react with matter (nuclei!)

- explore neutrino oscillations, CP violation in lepton sector, ...
- want to count how many neutrinos one has (of specific type and at specific distance)
- \hookrightarrow need to know how many react with matter (nuclei!)
 - at high energies: neutrinos "see" quarks
 - \hookrightarrow perturbative QCD
 - at lowest energies: neutrinos "see" nuclei
 - \hookrightarrow nuclear-structure physics
 - at low energies: neutrinos see "nucleons"
 - \hookrightarrow vector and axial-vector form factors of nucleon and pion production! \rightsquigarrow hyperons and $\Delta(1232)$

- explore neutrino oscillations, CP violation in lepton sector, ...
- want to count how many neutrinos one has (of specific type and at specific distance)
- \hookrightarrow need to know how many react with matter (nuclei!)
 - at high energies: neutrinos "see" quarks
 - \hookrightarrow perturbative QCD
 - at lowest energies: neutrinos "see" nuclei
 - \hookrightarrow nuclear-structure physics
 - at low energies: neutrinos see "nucleons"
 - \hookrightarrow vector and axial-vector form factors of nucleon and pion production! \rightsquigarrow hyperons and $\Delta(1232)$
 - true for all energies: need to get stuff out from the nucleus
- \hookrightarrow transport theory \rightsquigarrow ask Ulrich Mosel

Why are Δs and hyperons interesting?

Axial-vector (and vector) transition form factors

 interesting for scattering neutrino-nucleon to electron-Δ or muon-Δ or hyperon (Y) instead of Δ

• subsequently:
$$\Delta, Y \rightarrow \pi N$$

NuSTEC Collaboration, L. Alvarez-Ruso et al., Prog. Part. Nucl. Phys. 100 (2018) 1;
M. Hilt, T. Bauer, S. Scherer, L. Tiator, Phys. Rev. C 97 (2018) 3, 035205;
M. Holmberg, SL, Phys. Rev. D 100 (2019) 11, 114001;
Y. Ünal, A. Küçükarslan, S. Scherer, Phys. Rev. D 104 (2021) 9, 094014;
S.K. Singh, M.J. Vicente Vacas, Phys. Rev. D 74 (2006) 053009

Hyperon TFFs

Δ couplings and Δ -N transition form factors

• coupling constant Δ -N- π known from decay width of $\Delta
ightarrow \pi N$

but coupling constant Δ - Δ - π (g_1) unknown in size and sign

(actually there are two couplings, p and f wave \rightsquigarrow here: p-wave coupling)

one of the axial-vector transition form factors; g_1 enters indirectly at loop level

Y. Ünal, A. Küçükarslan, S. Scherer, Phys. Rev. D 104 (2021) 9, 094014

• quark model and large- N_c QCD suggest positive g_1 (figure: left-hand side)

recent analysis of π-N scattering suggests negative g₁
 → ask Evgeny Epelbaum
 De-Liang Yao et al., JHEP 05 (2016) 038

How about lattice QCD?

- currently under investigation using lattice QCD:
 - form factors of stable baryons
 - and their quark-mass dependence
- interpretation of results by chiral effective field theory
- \hookrightarrow ask Matthias Lutz

M.F.M. Lutz, U. Sauerwein, R.G.E. Timmermans, Eur. Phys. J. C 80 (2020) 9, 844; Phys. Rev. D 105 (2022) 5, 054005

see also F. Alvarado, L. Alvarez-Ruso, Phys. Rev. D 105 (2022) 7, 074001

How about lattice QCD?

- currently under investigation using lattice QCD:
 - form factors of stable baryons
 - and their quark-mass dependence
- interpretation of results by chiral effective field theory
- \hookrightarrow ask Matthias Lutz

M.F.M. Lutz, U. Sauerwein, R.G.E. Timmermans, Eur. Phys. J. C 80 (2020) 9, 844; Phys. Rev. D 105 (2022) 5, 054005

see also F. Alvarado, L. Alvarez-Ruso, Phys. Rev. D 105 (2022) 7, 074001

- but for transition form factors Δ -*N*:
 - $\bullet\,$ much more complicated because Δ is unstable
 - \hookrightarrow essentially four-point function instead of three-point function
 - and even more complicated for coupling constant $\Delta\text{-}\Delta\text{-}\pi$

How about lattice QCD?

- currently under investigation using lattice QCD:
 - form factors of stable baryons
 - and their quark-mass dependence
- interpretation of results by chiral effective field theory
- \hookrightarrow ask Matthias Lutz

M.F.M. Lutz, U. Sauerwein, R.G.E. Timmermans, Eur. Phys. J. C 80 (2020) 9, 844; Phys. Rev. D 105 (2022) 5, 054005

see also F. Alvarado, L. Alvarez-Ruso, Phys. Rev. D 105 (2022) 7, 074001

- but for transition form factors Δ -*N*:
 - much more complicated because Δ is unstable
 - \hookrightarrow essentially four-point function instead of three-point function
 - $\bullet\,$ and even more complicated for coupling constant $\Delta\text{-}\Delta\text{-}\pi$
- to circumvent problem: study (nearly) stable flavor partners
 - Ω - Ξ transition form factors
 - $\Omega \Xi^* K$ coupling constant

 \hookrightarrow related to $\Omega\text{-}\Xi^*$ transition by Goldberger-Treiman relation

My suggestion for a research program

- study Ω transition form factors in lattice QCD and experiment (and quark-mass dependence on lattice)
- interpret results using (dispersively modified) chiral effective field theory (dim χEFT)
- extrapolate to △ transition form factors using (dim) x EFT and experimental data (hyperons)
- obtain improved input for neutrino scattering (and obtain better understanding of structure of hadrons)

UU contribution: develop $\mathrm{dim}\chi\mathrm{EFT}$

Does all this make sense?

quark-mass and momentum dependence of nucleon Dirac form factor

F. Alvarado, D. An, L. Alvarez-Ruso, SL, Phys. Rev. D 108 (2023) 11, 114021

lattice data from Darmstadt-Edinburgh-Mainz group:

D. Djukanovic et al., Phys. Rev. D 103 (2021) 9, 094522

Hyperon TFFs

Dirac vector isovector form factor of nucleon

 $M_{\pi}=0.223\,{
m GeV}$

Branching ratio $\Omega^- ightarrow \Xi^0 e^- ar{ u}_{ m e}$ (measured)

- so far only next-to-leading-order (NLO) calculation finished
- contribution from LO Lagrangian ($\sim h_A$) related to $\Sigma^* \to \Sigma \pi$
- contributions from NLO Lagrangian $\sim c_M, c_E$
- \hookrightarrow $|c_{\mathcal{M}}|$ related to $\Sigma^{*0} \to \Lambda \gamma$
- \hookrightarrow get constraints on c_E from measured branching ratio:

M. Holmberg, SL, Eur. Phys. J. A 54 (2018) 6, 103; Phys. Rev. D 100 (2019) 11, 114001 C.J.G. Mommers, SL, Phys. Rev. D 106 (2022) 9, 093001 first steps beyond tree level: H. De Munck; M. Bertilsson, master theses UU 2023

Dalitz plot $\Omega^- \rightarrow \Xi^0 e^- \bar{\nu}_e$ (not measured yet)

• different values for c_F and sign of c_M influence Dalitz plot:

• sign change of c_M flips plots right \leftrightarrow left

Hyperon TFFs

Decay $\Omega^- ightarrow \Xi^{*0} \ell^- ar{ u}_\ell$ (not measured yet)

- provides access to sign and size of coupling constant Ω-Ξ*(1530)-K via Golberger-Treiman relation
- flavor related to sign and size of coupling constant Δ - Δ - π ($H_A = g_1$)
- so far only leading-order calculation for branching ratio and forward-backward (fb) asymmetry (Wu-type experiment) (rest frame of dilepton, measuring angle between baryons and charged lepton)

	$\Gamma_{\Omega \to \Xi^* \ell \bar{\nu}_\ell} / \Gamma_{\Omega, \mathrm{tot}}$	$\Gamma_{\rm fb}/\Gamma_{\Omega\to \Xi^*\ell\nu}$
$\ell = e, H_A = +2$	$1.2 \cdot 10^{-4}$	+0.011
$\ell = e, H_A = 0$	$6.7 \cdot 10^{-5}$	-0.00043
$\ell = e, H_A = -2$	$1.2 \cdot 10^{-4}$	-0.012
$\ell = \mu, H_A = +2$	$4.3 \cdot 10^{-6}$	-0.23
$\ell = \mu, H_A = 0$	$2.5 \cdot 10^{-6}$	-0.33
$\ell = \mu, H_A = -2$	$4.3 \cdot 10^{-6}$	-0.25

• note: $\Xi^{*0}(1530)$ "easy" to reconstruct via sequence $\Xi^{*0} \rightarrow \Xi^- \pi^+, \Xi^- \rightarrow \Lambda \pi^-, \Lambda \rightarrow p \pi^-$

M. Bertilsson, SL, arXiv: 2311.07471 [hep-ph]

Radiative decays of $\Xi^*(1530)$ and $\Sigma^*(1385)$

- our calculation so far only tree level (NLO)
- our predictions in boldface
- blue: measured red: predicted, but not measured yet

decay	$c/(c_M e)$	BR [%]	c_M [GeV ⁻¹]
$\Delta ightarrow N\gamma$	$2/\sqrt{3}$	$0.60{\pm}0.05$	$2.00 {\pm} 0.03$
$\Sigma^{*+} ightarrow \Sigma^+ \gamma$	$-2/\sqrt{3}$	$0.70{\pm}0.17$	$1.89{\pm}0.08$
$\Sigma^{*-} ightarrow \Sigma^- \gamma$	0	< 0.024	1/2/4
$\Sigma^{*0} ightarrow \Sigma^0 \gamma$	$1/\sqrt{3}$	$0.18{\pm}0.01$	12/4
$\Sigma^{*0} ightarrow \Lambda \gamma$	$^{-1}$	$1.25{\pm}0.13$	$1.89{\pm}0.05$
$\Xi^{*0}\to \Xi^0\gamma$	$-2/\sqrt{3}$	4.0±0.3	
$\Xi^{*-}\to \Xi^-\gamma$	0	< 4	1-12-14

M. Holmberg, SL, Eur. Phys. J. A 54 (2018) 6, 103

Form factors in $\Sigma^{*0}(1385) ightarrow \Lambda \, e^+ e^-$ (not measured yet)

• our method: dispersion relation (unsubtracted in lack of data)

O. Junker, SL, E. Perotti, T. Vitos, Phys. Rev. C 101 (2020) 1, 015206

• decay width about 3 keV

Magnetic form factor in $\Sigma^0 ightarrow \Lambda \, e^+ e^-$ (not measured yet)

• our method: dispersion theory with 2-pion intermediate states

C. Granados, SL, E. Perotti, Eur. Phys. J. A 53 (2017) 6, 117

• extended to coupled channels: 2 pions and 2 kaons

Y.-H. Lin, H.-W. Hammer, U.-G. Meißner, Eur. Phys. J. A 59 (2023) 3, 54

 $\hookrightarrow \mathsf{ask} \; \mathsf{Hans}\text{-}\mathsf{Werner} \; \mathsf{Hammer}$

- prediction can be drastically improved by "just" measuring slope at $t = q^2 \approx +0$, i.e. from $\Sigma^0 \rightarrow \Lambda e^+ e^-$
- cross relation to transition form factors N-A and N- Σ

Summary and Outlook

- D elta transition form factors are interesting for neutrino physics
- O mega transition form factors are a better starting point
- L attice QCD can tackle these (plus experimental guidance)
- C hiral effective field theory can interpret results
- E xtrapolation to Delta (EFT plus experimental guidance)

Summary and Outlook

- D elta transition form factors are interesting for neutrino physics
- O mega transition form factors are a better starting point
- L attice QCD can tackle these (plus experimental guidance)
- C hiral effective field theory can interpret results
- E xtrapolation to Delta (EFT plus experimental guidance)

\hookrightarrow Dolce

Summary and Outlook

- D elta transition form factors are interesting for neutrino physics
- O mega transition form factors are a better starting point
- L attice QCD can tackle these (plus experimental guidance)
- C hiral effective field theory can interpret results
- E xtrapolation to Delta (EFT plus experimental guidance)

 \hookrightarrow DOLCE

interesting hyperon decays:

• $\Omega^- \rightarrow \Xi^{*0} \ell^- \bar{\nu}$

- $\Omega^- \to \Xi^0 \ell^- \bar{\nu}$ $\Xi^{*0} \to \Xi^0 \gamma$
 - $\Sigma^{*0} \to \Sigma^0 \gamma$

• $\Sigma^{*0} \rightarrow \Lambda e^+ e^-$ • $\Sigma^0 \rightarrow \Lambda e^+ e^-$

Hyperon TFFs

Spare slides

Form factors in $\Sigma^{*0}(1385) ightarrow \Lambda \, e^+ e^-$ (not measured yet)

- our method: dispersion relation (unsubtracted in lack of data) O. Junker, SL, E. Perotti, T. Vitos, Phys. Rev. C 101 (2020) 1, 015206
- ρ meson is included via pion phase shift (model independent)

• "our" triangles with baryons are beyond vector-dominance model

Unitarity and analyticity

- constraints from local quantum field theory: partial-wave amplitudes for reactions/decays must be
 - unitary:

 $SS^{\dagger} = 1$, $S = 1 + iT \Rightarrow 2 \operatorname{Im} T = TT^{\dagger}$

→ note that this is a matrix equation: $Im T_{A \to B} = \sum_{X} T_{A \to X} T_{X \to B}^{\dagger}$ • analytic (dispersion relations):

$$T(s) = \frac{1}{\pi} \int_{-\infty}^{\infty} ds' \, \frac{\operatorname{Im} T(s')}{s' - s - i\epsilon}$$

- \rightsquigarrow can be used to calculate whole amplitude from imaginary part
 - practical limitation: too many states X at high energies
- \hookrightarrow in practice dispersion theory is a low-energy method ($\lesssim 1\,{\rm GeV})$ or use resonance saturation

Example: electromagnetic baryon form factors

• how to obtain a form factor?

- $\bullet\,$ need to resolve at least the finite size $\lesssim 1\,{\rm fm}$
- but inverse size of a hadron is larger than pion mass
- first one probes something universal (independent of $B_{1,2}$):

• now we are in the game with dispersion theory

Hyperon TFFs

Deconstruct a form factor

Hyperon TFFs

How to get the pion vector form factor?

$$F_{V}(s) = (1 + \alpha_{V} s) \exp \left\{ s \int_{4m_{\pi}^{2}}^{\infty} \frac{\mathrm{d}s'}{\pi} \frac{\delta(s')}{s'(s' - s - i\epsilon)} \right\}$$

with pion phase shift δ and $\alpha_V \approx 0.12 \,\text{GeV}^{-2}$ (from fit to FF data)

Hyperon TFFs

Pion vector form factor and data

Alvarado/An/Alvarez-Ruso/SL, Phys. Rev. D 108 (2023) 11, 114021

Hyperon TFFs

Deconstruct a form factor

Scattering processes

Known input

• baryon-pion coupling constants from decay widths

 \hookrightarrow sometimes only moduli known

Unknown: some numbers

What can we learn here?

- the long-distance part is universal
- \hookrightarrow needs to be understood once, not always new for each process
- \hookrightarrow a lot is fixed by (chiral) symmetries
 - the short-distance part is process dependent and sensitive to the details (dynamics) of QCD
 - obtain information by combining hadron based effective field theories + dispersion theory (parametrization of short-distance physics) with quark based methods (determination of parameter values)

Hyperon TFFs

Importance of Δ in low-energy QCD?

What is unknown for Δ baryons?

- coupling constant Δ - Δ - π completely unknown; not even sign is clear
- further example: is interference of

constructive or destructive?

- one problem to determine Δ properties with better precision: Δs are rather broad states ($\Gamma\approx 100\,MeV)$
- \hookrightarrow worth to study strange siblings from decuplet
- \hookrightarrow e.g. Ω - Ξ^* -K coupling and related $\Omega \to \Xi^* \ell \nu$