Production of charm mesons at low energies: From fixed-target LHC experiments to SIS100

Rafał Maciuła

Institute of Nuclear Physics PAN, Kraków, Poland

in collaboration with A. Szczurek

based on:

Phys.Rev.D 102 (2020) 1, 014028; J. High Energy Phys. 10 (2020) 135 Phys.Rev.D 105 (2022) 1, 014001; Phys.Lett.B 835 (2022) 137530

Physics opportunities with proton beams at SIS100 6-9 February 2024, Wuppertal University, Germany

Recombination Charm asymmetry Introduction Intrinsic charm Fixed-target data Summary 00000

Far-forward charm production at high energies

- an interplay of small- and large-x effects
- probing parton densities simultaneously at extremely small ($x < 10^{-6}$) and large (x > 0.1) longitudinal momentum fractions

- gluon saturation, intrinsic charm content of the nucleon, recombination mechanism
- forward hadronization (e.g. color reconnection, beyond leading color strings, etc.)

Experiments connected to forward charm production at the LHC and beyond:

- Forward Physics Facilities (FPF) at the LHC:
 - (FASER ν , FASER ν 2, SND@LHC, FLArE): ν_e, ν_μ, ν_τ neutrino fluxes

Forward charm production at low energies

- rather large-x effects
- ullet probing parton densities simultaneously at rather intermediate $(x\gtrsim 10^{-3})$ and large $(x\gtrsim 0.1)$ longitudinal momentum fractions

- gluon saturation, intrinsic charm content of the nucleon, recombination mechanism
- forward hadronization (e.g. color reconnection, beyond leading color strings, etc.)

Experiments connected to forward charm production at lower energies:

- fixed-target LHCb mode: D-meson, J/Ψ -meson at $\sqrt{s}=86.6$ GeV and 68.5 GeV
- fixed-target SHIP experiment at SPS: ν_{τ} neutrino flux $\sqrt{s} = 27.4$ GeV
- fixed-target NA69/DsTau experiment at SPS: ν_{τ} neutrino flux $\sqrt{s}=27.4$ GeV

QCD charm production mechanisms at forward directions

- $g^*g^* \rightarrow c\bar{c} \Rightarrow$ the standard QCD mechanism (and usually considered as a leading) of gluon-gluon fusion with off-shell initial state partons, calculated both in the full k_T -factorization approach and in the hybrid model
- g*c → gc ⇒ the mechanism driven by the intrinsic charm component of proton calculated in the hybrid approach with off-shell initial state gluon and collinear intrinsic charm quark
- gq → Dc ⇒ the recombination mechanism calculated in the leading-order collinear approach

The k_T -factorization (high-energy factorization) approach

off-shell initial state partons ⇒

initial transverse momenta explicitly included $k_{1,t}$, $k_{2,t} \neq 0$

- additional hard dynamics coming from transverse momenta of incident partons (virtualities taken into account)
- very efficient for less inclusive studies of kinematical correlations
- more exclusive observables, e.g. pair transverse momentum or azimuthal angle very sensitive to the incident transverse momenta

$$\begin{split} & \text{multi-differential cross section:} \\ & \frac{d\sigma}{dy_1 dy_2 d^2 p_{1,t} d^2 p_{2,t}} = \int \frac{d^2 k_{1,t}}{\pi} \frac{d^2 k_{2,t}}{\pi} \frac{1}{16\pi^2 (\mathbf{x}_1 \mathbf{x}_2 \mathbf{s})^2} \frac{|\mathcal{M}_{\mathbf{g}^*\mathbf{g}^* \to Q\bar{\mathbf{Q}}}|^2}{|\mathcal{M}_{\mathbf{g}^*\mathbf{g}^* \to Q\bar{\mathbf{Q}}}|^2} \\ & \times \quad \delta^2 \left(\vec{k}_{1,t} + \vec{k}_{2,t} - \vec{p}_{1,t} - \vec{p}_{2,t}\right) \ \mathcal{F}_{\mathbf{g}}(\mathbf{x}_1, k_{1,t}^2, \mu) \ \mathcal{F}_{\mathbf{g}}(\mathbf{x}_2, k_{2,t}^2, \mu) \end{split}$$

- the LO off-shell matrix elements $\overline{|\mathcal{M}_{g^*g^*} \rightarrow Q\bar{Q}|^2}$ available (analytic form)
- ullet the 2 o 3 and 2 o 4 processes (higher-order) only at tree-level (KaTie Monte Carlo)
- $\mathcal{F}_{g}(x, k_{t}^{2}, \mu)$ transverse momentum dependent unintegrated PDFs (uPDFs)

part of higher-order (real) corrections might be effectivel included in uPDF

 Introduction 0000●
 Intrinsic charm
 Fixed-target data 0000
 Recombination 000
 Charm asymmetry 000
 SIS100 000
 Summary 000

Forward charm production at the LHCb in collider mode

Open charm LHCb data in pp-scattering at $\sqrt{s} = 7$, 13 TeV:

Detector acceptance: 2.0 < y < 4.5 and $0 < p_T < 8$ GeV

- inclusive *D*-meson spectra and $D\overline{D}$ -pair correlation observables $(M_{inv}, \Delta \varphi, p_T$ -pair)
 - longitudinal momentum fractions probed: $10^{-3} < x_1 < 10^{-1}$ and $10^{-5} < x_2 < 10^{-3}$
 - ullet p_T -differential cross section well described in different y-bins
 - correct shapes of the correlation observables

(R.M., A. Szczurek, Phys.Rev.D 100 (2019) 5, 054001)

k_T-factorization works very well

Charm production driven by the intrinsic charm

What if there is a non-perturbative charm content of the proton?

The charm quark in the initial state \Rightarrow

- perturbative: extrinsic charm (from gluon splitting)
- non-perturbative: intrinsic charm (IC)
- lacktriangle the differential cross section for $cg^* o cg$ mechanism:

$$d\sigma_{pp\to charm}(cg^* \to cg) = \int dx_1 \int \frac{dx_2}{x_2} \int d^2k_t$$
$$\times c(x_1, \mu^2) \cdot \mathcal{F}_g(x_2, k_t^2, \mu^2) \cdot d\hat{\sigma}_{cg^* \to cg}$$

- $c(x_1, \mu^2) \Rightarrow$ collinear charm quark PDF (large-x)
- $\mathcal{F}_g(x_2, k_t^2, \mu^2) \Rightarrow \text{off-shell gluon uPDF (small-}x)$
- $d\hat{\sigma}_{cg^* \to cg} \Rightarrow$ only in the massless limit (also available in KaTie)
- phenomenological regularization needed at $p_T \to 0 \Rightarrow$ we use PYTHIA prescription: $F_{sup}(p_T) = \frac{p_T^2}{p_{To}^2 + p_T^2}$, $\alpha_S(\mu_R^2 + p_{To}^2)$, where $p_{To} = 1.5$ GeV (free parameter)
- the charm quark PDF with IC content is taken at the initial scale: $c(x_1, \mu_0^2)$, where $\mu_0 = 1.3$ GeV so the perturbative charm contribution is intentionally not taken into account

 Introduction 00000
 Intrinsic charm 00000
 Fixed-target data 0000
 Recombination 000
 Charm asymmetry 000
 SIS100 00
 Summary 000

The concept of intrinsic charm in the nucleon

The intrinsic charm quarks ⇒ multiple connections to the valence quarks of the proton

• dfferent pictures of non-perturbative $c\bar{c}$ content:

- sea-like models
- valence-like models
- we use the IC distributions from the CT14nnloIC and CT18FC PDFs
- Brodsky-Hoyer-Peterson-Sakai (BHPS) model
- Meson-Baryon Model (MBM)
- global experimental data put only loose constraints on the P_{ic} probability

- the presence of an intrinsic component implies a large enhancement of the charm distribution at large \times (>0.1) in comparison to the extrinsic charm prediction
- the models do not allow to predict precisely the absolute probability P_{ic}

Intrinsic charm at the LHC and beyond

A possible impact of the intrinsic charm component on the forward charm particle production in already existing or future experiments at different energies:

• FASER at the LHC (dedicated to a measurement of forward neutrinos originating from semileptonic decays of *D* mesons)

- the intrinsic charm important at |y| > 6
- transverse momentum distribution visibly enhanced

 Introduction 00000
 Intrinsic charm 00000
 Fixed-target data 0000
 Recombination 000
 Charm asymmetry 000
 SIS100 00
 Summary 000

Intrinsic charm at the LHC and beyond

A possible impact of the intrinsic charm component on the forward charm particle production in already existing or future experiments at different energies:

• Fixed-target LHCb mode at $\sqrt{s} = 86.6$ GeV (*D*-meson production)

ullet at the lower energy \Rightarrow the intrinsic charm important already at |y|>1

 Introduction
 Intrinsic charm
 Fixed-target data
 Recombination
 Charm asymmetry
 SIS100
 Summary

 ○○○○
 ○○○
 ○○○
 ○○○
 ○○
 ○○
 ○○

Intrinsic charm at the LHC and beyond

A possible impact of the intrinsic charm component on the forward charm particle production in already existing or future experiments at different energies:

• SHIP/DsTau at the SPS CERN at $\sqrt{s}=27.4$ GeV (dedicated to a measurement of forward ν_{τ} neutrinos originating from semileptonic decays of D_s mesons)

- at the lower energy ⇒ the intrinsic charm important in the whole rapidity spectrum
- transverse momentum distribution visibly enhanced

 Introduction 00000
 Intrinsic charm 00000
 Fixed-target data 0000
 Recombination 000
 Charm asymmetry 000
 SIS100 000
 Summary 000

Fixed-target charm data at $\sqrt{s} = 86.6$ GeV: Intrinsic Charm

The fixed-target data on forward open charm meson production already exists:

• Fixed-target LHCb mode at $\sqrt{s} = 86.6$ GeV (*D*-meson production)

- some problems with understanding the LHCb fixed-target open charm data identified
- only upper limits of theoretical predictions (based on different approaches) can roughly describe the data
- different sources of uncertainties: charm quark mass, renormalization and factorization scales, details of the fragmentation procedure, etc.

 Introduction
 Intrinsic charm
 Fixed-target data
 Recombination
 Charm asymmetry
 SIS100
 Summary

 0000
 000
 00
 00
 00
 0
 0
 0
 0

Fixed-target charm data at $\sqrt{s} = 86.6$ GeV: Intrinsic Charm

The fixed-target data on forward open charm meson production already exists:

• Fixed-target LHCb mode at $\sqrt{s} = 86.6$ GeV (*D*-meson production)

- some problems with understanding the LHCb fixed-target open charm data identified
- ullet a new scenario proposed with the intrinsic charm contribution needed to describe the data points in the backward direction and at larger p_T 's
- $\chi^2_{\rm min}$: $P_{ic} \sim 1.65\%$ but large uncertainties

 Introduction
 Intrinsic charm
 Fixed-target data
 Recombination
 Charm asymmetry
 SIS100
 Summary

 0000
 0000
 00
 00
 0
 0
 0

Fixed-target charm data at $\sqrt{s}=38.7$ GeV: Intrinsic Charm

The fixed-target data on forward open charm meson production already exists:

• Fermilab (1986): *D*-meson production in pp-scattering at $\sqrt{s} = 38.7$ GeV

- we obtain a very good description of the x_F-distribution within our model with the same set of parameters as in the LHCb case
- the intrinsic charm component crucial for large- x_F data

Introduction

The $c\bar{q}$ -recombination mechanism of charm production

Braaten-Jia-Mechen (BJM) recombination: $q + g \rightarrow (\bar{c}q)^n + c$

- short-distance process (in contrast with fragmentation)
- (\(\bar{c}q\))ⁿ: q has small momentum in the \(\bar{c}\) rest frame
 q and \(\bar{c}\) are in a state with definite color and angular
- direct meson: $qg \rightarrow \bar{D}c$ and $\bar{q}g \rightarrow D\bar{c}$
- subsequent fragmentation of the associated c-quark

momentum quantum numbers specified by n

- ullet the direct recombination leads to $D/ar{D}$ production asymmetry
- \bullet the differential cross section for $qg\to \bar Dc$ mechanism: $d\sigma$

$$\frac{d\sigma}{dy_1 dy_2 d^2 p_t} = \frac{1}{16\pi^2 \hat{s}^2} [x_1 q_1(x_1, \mu^2) x_2 g_2(x_2, \mu^2) \overline{|\mathcal{M}_{qg \to \bar{D}c}(s, t, u)|^2} + x_1 g_1(x_1, \mu^2) x_2 q_2(x_2, \mu^2) \overline{|\mathcal{M}_{gq \to \bar{D}c}(s, t, u)|^2}]$$

- $\overline{|\mathcal{M}_{qg \to (\bar{c}q)^n c}|^2} \Rightarrow$ explicit form of the matrix element squared available
- ρ can be interpreted as a probability to form real meson
 ⇒ can be extracted from experimental data
 e.g. fixed-target LHCb data on D/D̄ production asymmetry!

Fixed-target charm data at $\sqrt{s}=86.6$ GeV: Recombination

\Leftarrow the rapidity distribution for D^0 -meson:

- there is a room for the recombination mechanism with $\rho=10\%$ together with the intrinsic charm contribution with $P_{IC}=1.0\%$
- ψ very recent LHCb fixed-target data on the $D^0/\overline{D^0}$ production asymmetry at $\sqrt{s}=68.5$ GeV: Eur.Phys.J. C83 (2023) 541
 - ullet our predictions consistent with the LHCb data taking ho=10%!

IntroductionIntrinsic charmFixed-target dataRecombinationCharm asymmetrySIS100Summary0000000000000000

Fixed-target charm data at $\sqrt{s} = 68.5$ GeV: New analysis

- a lack of the well-established methods for the hadronization of heavy quarks into heavy hadrons in the forward/backward directions
- e.g. Pythia has only been tuned in the central region, and thus one should not expect reliable predictions in the forward direction
- dedicated forward physics tunes needed (some first attempts done only very recently in Phys.Rev.D 109 (2024) 1, 016010)

- the alternative and often used fragmentation procedure with fragmentation functions also has limitations when dealing with forward production and small transverse momenta
- our recent update with respect to the previous studies: the fragmentation procedure performed in the parton-parton c.m.s. (not in overall proton-proton c.m.s.)
- a visible sensitivity of the results to the details of the fragmentation procedure

 Introduction
 Intrinsic charm
 Fixed-target data
 Recombination
 Charm asymmetry
 SIS100
 Summary

 00000
 0000
 00
 0 ●0
 0
 0
 0

Fixed-target charm data at $\sqrt{s} = 68.5$ GeV: CT18FC PDF

CT18FC: BHPS and MBM

both BHPS and MBM lead to very similar differential cross sections

• P_{IC} : CT18FC ($\approx 0.5\%$) and CT14nnloIC (between 1% and 2%)

 Introduction
 Intrinsic charm
 Fixed-target data
 Recombination
 Charm asymmetry
 SIS100
 Summary

 00000
 00000
 00
 00
 0
 0
 0
 0
 0

Fixed-target charm data at $\sqrt{s} = 68.5$ GeV: The asymmetry

- BHPS3: symmetric $c = \bar{c}$
- MBMC/MBME: asymmetric $c \neq \bar{c} \Rightarrow$ may lead to D/\overline{D} production asymmetry

- backward rapidity region and small-p_T: the asymmetry well described by the recombination only (the asymmetric IC does not change the situation here)
- the asymmetry at larger p_T 's: cannot be described by the recombination
- lacktriangle asymmetric IC generates the D/\overline{D} asymmetry at large- p_T , however, the effect is to small to describe the data points

What if we go to even lower energies?

0.7

X

regions and in forward directions, etc.) SIS100 (CBM, NuStar) can contribute? Introduction Intrinsic charm Fixed-target data Recombination Charm asymmetry SIS100 Summary

Conclusions

We have shown that **the intrinsic charm** and **the recombination** mechanisms can be extremely important for **forward charm production** at energies much lower than the nominal LHC energies:

- D-meson at fixed-target LHCb experiments
 - a scenario proposed with the intrinsic charm contribution needed to describe the data points in the backward direction and at larger p_T's
 - ullet upper limit for the intrinsic charm probability $P_{IC}~(pprox 0.5\%)$ with the CT18FC
 - still a room for recombination mechanism
 - the recombination probability from D/\overline{D} -production asymmetry ($\approx 10\%$)
 - ullet the $D/ar{D}$ production asymmetry in the backward region and at small transverse momenta well explained by the recombination mechanism
 - the asymmetry at larger transverse momenta can be described neither by the recombination mechanism nor by the asymmetric intrinsic charm

Thank You!

Backup Slides

Intrinsic charm at the LHC and beyond

A possible impact of the intrinsic charm component on the forward charm particle production in already existing or future experiments at different energies:

• Future Circular Collider (FCC) (*D*-meson production)

- the intrinsic charm important at |y| > 7
- transverse momentum distribution visibly enhanced

The $c\bar{q}$ -recombination mechanism of charm production

 both IC and recombination negligible at the LHCb in collider mode:

$$\sqrt{s} = 13$$
 TeV, $2 > y > 4.5$

- situation changes when approaching larger rapidities
- y > 6: IC dominates over the standard mechanism
- y > 6: recombination and the standard mechanism of similar size

Kinematics probed with the IceCube prompt neutrino flux

Mapping the dominant regions of the phase space associated with $c\bar{c}$ -pair production relevant for the **prompt flux at IceCube**

(V.P. Goncalves, R.M., R. Pasechnik, A. Szczurek, Phys.Rev.D 96 (2017) 9, 094026)

- recent: up to $E_{\nu}=3\cdot 10^6~\text{GeV}\Rightarrow$ the LHC energy range
- future: $E_{\nu} > 10^7 \text{ GeV} \Rightarrow \text{energy range beyond that probed in the LHC Run2}$
- flux sensitive to the p_T < 5 GeV

Kinematics probed with the IceCube prompt neutrino flux

Mapping the dominant regions of the phase space associated with $c\bar{c}$ -pair production relevant for the **prompt flux at IceCube**

(V.P. Goncalves, R.M., R. Pasechnik, A. Szczurek, Phys.Rev.D 96 (2017) 9, 094026)

- projectile: $0.2 < x_1 < 0.6$
- target: $10^{-6} < x_2 < 10^{-5}$ (IceCube recently) and even $10^{-8} < x_2 < 10^{-5}$ (future)
- far-forward production beyond the LHC range ⇒ very asymmetric kinematics

Predictions of our model for charm x_F -distributions

- when intrinsic charm is included the behavior of the x_F -distribution is strongly modified in the $0.03 \le x_F \le 0.6$ range
- $lackbox{ }$ the Feynman x_F -distribution for large x_F is dominated by the $cg^* o cg$ mechanism with intrinsic charm
- our predictions for the standard charm production mechanism obtained with the hybrid model are consistent with the NLO collinear calculations by FONLL

Prompt neutrino fluxes and saturation effects

- ullet sum of both production mechanisms: gg^* -fusion and the cg^* with IC BHPS 1%
- the KMR and KS linear predictions are similar \Rightarrow BFKL effects not important for IceCube (which probes 0.2 < x_F < 0.5)
- the KS nonlinear is a factor ≈ 3 smaller for $x_F = 0.2$ \Rightarrow saturation effects strongly modifies the magnitude of the distribution

Predictions and IceCube limits including saturation

- within the saturation scenario the impact of the prompt flux driven by the gluon-gluon fusion mechanism is even smaller and becomes negligible
- nonlinear QCD dynamics $\Rightarrow P_{ic} \le 2.0\%$
- slightly higher than the central CT14nnloIC PDF set

IceCube: Prompt neutrino fluxes and intrinsic charm

- intrinsic charm very important
- extrinsic charm negligible
- the inclusion of the $cg^* \rightarrow cg$ mechanism driven by the intrinsic charm (IC) has a strong effect on the prompt neutrino flux
- ullet the flux is enhanced by one order of magnitude when intrinsic charm is present $(P_{ic}=1\% \ {
 m here})$

IceCube: Predictions and limits for intrinsic charm

- the impact of the prompt flux is small in the current kinematical range probed by IceCube as long as only the gluon-gluon fusion mechanism is taken into account
- the intrinsic charm mechanism implies a large enhancement of the prompt flux at large E_{ν} , with the associated magnitude being dependent on the value of P_{ic}
- linear QCD dynamics $\Rightarrow P_{ic} < 1.5\%$
- similar to the central CT14nnloIC PDF set

FASER ν 2: Far-forward neutrino fluxes

Semileptonic decays of $D^0, D^+, \Lambda_c \Rightarrow$ source of ν_e, ν_μ

- $E_{\nu} > 100$ GeV \Rightarrow intrinsic charm and recombination larger than standard mechanism
- both IC and recombination of similar size
- ν_{μ} : large backgrounds from π and K \Rightarrow IC and recombination completely covered even at large energies
- $\nu_{\rm e}$: large background from K but \Rightarrow both IC and recombination win at $E_{\nu} > 1000$ GeV

FASER ν 2: Far-forward neutrino fluxes

D_s^+ meson decays \Rightarrow dominant source of $u_ au$

- direct $D_s^+ \to \tau^+ \nu_{\tau}$ and chain $D_s^+ \to \tau^+ \to \overline{\nu}_{\tau}$ decays
- $lackbox{ on background from light mesons due to limited phase space for <math> au$ production in the $D_{
 m s}$ decay
- $s(x) \ll u_{val}(x), d_{val}(x) \Rightarrow$ recombination reduced
- $E_{\nu} > 100 \text{ GeV} \Rightarrow \text{intrinsic charm larger than standard mechanism}$
- flux dominated by intrinsic charm
- optimal to pin down the IC contribution in the nucleon

