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Just Brainstorming

What can we do with high energy proton beams for studying
hypernuclei?

* With direct production by proton beams
* With secondary produced hyperons

 Comment for a possible new beamline for producing secondary
meson beams



The HypHI Phase O at GSI (2006-2012)
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Two outcomes (mysteries)
by HypHI
Signals indicating nnA bound state
All theoretical calculations are negative
* E. Hiyama et al., Phys. Rev. C89 (2014) 061302(R)
* A.Gal et al., Phys. Lett. B736 (2014) 93
* H. Garcilazo et al., Phys. Rev. C89 (2014) 057001

and much more publication

Short lifetime of 3\H c. Rrappold et al., Nucl. Phys. A 913 (2013) 170
* HypHI Phase 0: 18342 3, ps

Stimulated other experiments
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The world situation of three-body hypernuclei
On hypertriton
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The world situation of three-body hypernuclei
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The world situation of three-body hypernuclei
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The novel technique
with FRS at GSI (2016-)
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Hypernuclear production with proton beams
p+AZ > AL, Z + K

e Large momentum transfer to produced A

e Small production cross section

p+AZ->A,(2-1) +p+K
* Selecting a proper (large) momentum region of out-going
momentum
— A with a small momentum transfer
H. Jing et al., arXiv:0805.0398v2 (2008)
* However, not very competitive to other production methods

Spallation-like production



Spallation-like hypernuclear production

proton target K
o— _: R
' hypernucleus

My consideration in 2008 (presented in NPO8 conference in Mito/Japan):

Can we measure hypernuclear magnetic moments?



Hypernuclear magnetic moments

 Very sensitive probe of A-wave function in hypernuclei

* Small AN configuration mixing due to weak AN interactions

* Theoretical calculations rather straight forward
* Schmidt diagrams, Y. Tanaka, Phys. Lett B 227 (1989) 195.

* Simplest case : >,He (A + “He), Nucl. Phys. A 625 (1997) 95

* Pure isoscaler and only one Kaon exchanging current (two kaon exchange is
negligible),

 Core polarization effect suppressed (tensor forces, no pion exchanging
current),

e Small A-Z mixing (incoherent A-X coupling),

* Kaon exchanging current is only the source of the deviation of the magnetic
moment of free-A -> -8.8%

5,He is a good case to look for exotic phenomena like the quark
Pauli effect and the medium modification of the A magnetic
moment (Nucl. Phys. A 446 (1985)467c).



Hypernuclear magnetic moments on °,He
If the magnetic moment of >\He is deviated from the theoretical
prediction (8.8 % reduction from the A value)

* Modification of A properties in nuclei?

A sort of EMC effect?

e Quark-gluon contributions?

* Some unexpected sources?

Maybe important for compressed nuclear matters



Initial idea of hypernuclear magnetic moments
measurement (2004)

* With meson and electron beam induced hypernuclear production
* Very small recoil momentum of produced hypernuclei

* Almost impossible to perform direct measurements of hypernuclear magnetic
moments

* B(M1) measurements with y-ray spectroscopy

* Hyperball-J at J-PARC
* Contributions from nuclear collective motion have to be subtracted

* Initial idea with with heavy ion beams (2004) §- &/ﬁﬁ
* Hypernuclei at projectile rapidity — relativistic hypernuclei = - @ D
* Hypernuclei can be separated by a magnetic spectrometer

* Precession of hypernuclear spin alignment in magnetic field
e Perturbed m- asymmetry — magnetic moments

e Can be performed only at FAIR in near future



Initial idea of hypernuclear magnetic moments
measurement (2004, HypHI Phase 3)
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Can we measure magnetlc moments with CBM?
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Can we measure magnetlc moments with CBM?
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Spallation-like hypernuclear production
GIBUU calculations for the case of J-PARC at 50 GeV (2008)

T. Gaitanos et al. / Physics Letters B 675 (2009) 297-304
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Estimation for °>\He with CBM

For 50 GeV proton beams (similar to the SIS100 case)
With the current CBM magnet
* Lorentz factor:y ~ 3

* Magnetic rigidity for
* Making nuclear precession: 0.3 Tm (0.3 m)
* Decay volume 0.4 Tm (0.4 m)
» Separation and bending 0.3 Tm (0.4 m)

* Estimated production cross section: ~ 100 ub
* Beam intensity: 101 /s
* Target: 1°C, 12 g/cm?

Expected rate: 8.6X10% reconstructed events /week
Spin precession angle: 1.5 degrees



Can we measure magnetlc moments with CBM?
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Estimation for °>\He with CBM

For 50 GeV proton beams (similar to the SIS100 case)
With a longer and stronger magnet (2T *3 m = 6Tm)
* Lorentz factor:y ~ 3

* Magnetic rigidity for
* Making nuclear precession: 2 Tm (1 m, additional magnet)

* Decay volume: free space 0 Tm (1 m)
» Separation and bending 1 Tm (CBM magnet)

* Estimated production cross section: ~ 100 ub
* Beam intensity: 101 /s
* Target: 1°C, 12 g/cm?

Expected rate: 1X10° reconstructed events /week
Spin precession angle: 20 degrees



With secondary produced hyperons

Example: Similar to the J-PARC EO7 experiment
12 + 0 or/and
p+ C> Z+K+K+X Using our machine learning technique
/ for emulsions

To secondary target (nuclear emulsion) CBM detector
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Nuclear Emulsion:

Charged particle tracker with

the best spatial resolution

(easy to be <1 um, 11 nm at best)
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Results from J-PARC EO7 (Hybrid method)
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S. H. Hayakawa et al.,
Physical Review Letters, 126, 062501 (2021)

M. Yoshimoto et al.,
Prog. Theor. Exp. Phys. 2021, 073D02
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H. Ekawa et al., Prog. Theor. Exp. Phys. 2019, 021D02



Results from J-PARC EO7 (Hybrid method)

AAcandldates 14 TwmAever\ts 13 . Others 6

! Non-trlggered events recorded in 1300 emulsions sheets
* 1000 double-strangeness (AA- and Z-) hypernuclear events
\| * Millions of single-strangeness hypernuclear events

&

Overall scanning of all emulsion sheets
(35 X 35 cm? X 1000)

M. Yoshimoto

Prog. Theor. Exp. Phys. 2021, 073D02 \15
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H. Ekawa et al., Prog. Theor. Exp. Phys. 2019, 021D02



The world situation of three-body hypernuclei

On hypertriton
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FIG. 5. The enlarged mass spectrum around the Ann thresh-
old. Two additional Gaussians were fitted together with the known
contributions (the accidentals, the A quasifree, the free A, and the
3He contamination). The one at the threshold is for the small peak,
while the broad one is for the additional strength above the predicted
quasifree distribution.
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Overall scanning for EO7 emulsions




Overall scanning for EO7 emulsions




Overall scanning for EO7 emulsions




Overall scanning for EO7 emulsions




~ Data size:
~*107 images per emulsion (100 T Byte)
~ +10% jmages per 1000 emulsions (100 P Byte)
~ | Number of background tracks:
- *Beam tracks: 10*/mm?2
°Nuc|earfragmentat|ons 103/mm?2
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Millions of single-strangeness hypernuclei
1000 double strangeness hypernuclei (formerly only 5)




Setup for analyzing emulsions
at the High Energy Nuclear Phy5|cs Laboratory in RIKEN

* Hypernuclear physics
* Neutron imaging

Part-timer staffs working
for emulsion &
microscopes




Challenges for Machine Learning Development

MOST IMPORTANT:
* Quantity and quality of training data

However,
No existing data for hypertriton with emulsions for training

Our approaches:

Producing training data with
* Monte Carlo simulations

* Image transfer techniques



Production of training data

Monte Carlo simulations and GAN(Generative Adversarial Networks)

Binarized tracks from MC simulations GAN: pix2pix
+ background from the real data ; Edges to Photo '

Imitated
emulsion image

output

|

Binarized (like for simulations) Real emulsion image Ayumi Kasagi. Ph.D. thesis (2023)

A.Kasagi et.al, NIM A1056, (2023) 168663



Production of training data

Monte Carlo simulations and GAN(Generative Adversarial Networks)

Binarized tracks from MC simulations GAN: pix2pix

+ background from the real data Ppdacer. Gdining dals ' Edges to Photo

output

Binarized (like for simulations) Real emulsion image Ayumi Kasagi. Ph.D. thesis (2023)

A.Kasagi et.al, NIM A1056, (2023) 168663



Production of training data

Monte Carlo simulations and GAN(Generative Adversarial Networks)

Real 7 § Simulated




Detection of hypertriton events

12

With Mask R-CNN model
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Training of Mask R-CNN with Simulated image

Mask R-CNN ‘ | Example of training dataset Training data (Simulated image)
. . /’ '

(Target event)

yyyyy

B | APedestrian dataset | | [t SR
ha P 3 5 .-‘1*:*.:" & ' 4
O um

https://www.cis.upenn.edu/~jshi/ped_html/ Masks are automatically produced
Performance of a-decay detection 5
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. g A.Kasagi et.al,

50 um ‘ NIM A1056, (2023) 168663.



Hypertriton search with Mask R-CNN

Two body decay of AH Training dataset (Simulated images)
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Our unique machine learning development

Producing training data by Monte Monte Carlo simulations + binarized
Carlo simulations and machine image from real emsnns =
learning techniques R r T

Produced training data

* Development with Generative
Adversarial Networks (GAN)

Detection of 2—dody hypernuclear
decay at rest

* Development with Mask—R CNN
model

Detected!
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Discovery of the first hypertriton event in EO7 emulsions
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Guaranteeing the determination of

the hypertriton binding energy SOON l |
Precision: 28 keV o)
E. Liu et al., EP) A57 (2021) 327 o i

Ayumi Kasagi.
Ph.D. thesis (2023)

Ayumi Kasagi
(RIKEN, Gifu)



Current status (as of December 2023)
No. events: 188 (0.6% of the entire EO7 data)
«3,H: 41
« 4, H: 147 (ldentified: 91 + Penetrated: 56)

Calibrated events: 174
w 3/\H: 36
« 4, H: 138 (Identified: 87 + Penetrated: 51)

* Deducing the 3,H binding energy is in progress
e Statistics can be 167 times larger
* Estimated systematic error: 28 keV or smaller




Current machine learning developments

Improvements for the hypertriton binding ener

* Automated pion tracking
* Automated emulsion calibration

yuml asagi
(RIKEN, Gifu, Rikkyo) ristophe Rappold 4 \ 3o
( CM drid) . ¥ Nae <

Detection of three- and multl body single-A hypernuclear decay
(from May 2022) ' '

Search for double-strangeness hypernuclel
(from June 2022) | e EEE——

Yan He, Ph.D. thesis



: Yan H
Searching for i o

double-strangeness hypernuclei Ph.D. thesis

€ Model performance

€ Prepare training dataset

production

vertex
" e a/

Double-strangeness hypernuclei
event topology — “three vertices”

triple-close shell

Geant4 simulation, image process,
H.Takahashi et. al, Phys. Rev. Lett. 87 (2001) 212502.
machlne learning — GAN p1x2p1x

8 mask image

20x

Efficiency for produced image is 93%
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Searching for i o

double-strangeness hypernuclei Ph.D. thesis

€ Current status and near future New candidate

» Analyzed 0.2% of the entire data, one candidate & — —

found. e »
» Searching for double-strangeness hypernuclei 7/

with newly developed machine-learning method o 4 L | Difficult to identify

is in progress. < ) ' == j

O MINO event ’ 20x° O IBUKI event | 20x
from E07 hybrid b T 3 from EO7 hybrid ‘
Ry i _
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H. Ekawa et al., Prog. Theor. Exp.
Phys. 2019, 021D02 (2019b) E.

S.H. Hayakawa et al., Phys. Rev. Lett.
126, 062501 (2021)




With secondary produced hyperons

CBM detector

Example: Soa e
N O SRS @ o e

To secondary target (nuclear emulsion)
Qs Ep-> AA

Complementary to hypernuclear studies with

heavy ion beams at CBM

* Heavier hypernuclei

* \ery precise binding energies (even with one
event)



Additional comment
J-PARC hadron hall

* Very unique beam lines to produce secondary meson beams (K and n)
* In addition, a program with heavy ion beams with a fixed target (J-

PARC HI) in under discussion

Similar direction to CBM



Additional comment
J-PARC hadron hall

* Very unique beam lines to produce secondary meson beams (K and n)
* In addition, a program with heavy ion beams with a fixed target (J-

PARC HI) in under discussion

Similar direction to CBM
The original CBM experiment

* Very unique program with heavy ion beams with a fixed target
* Now, we are discussing physics opportunities with proton beams
e Can we also consider to make a secondary beam line for K and «?

Similar direction to J-PARC



Summary (my personal considerations)

Spallation-like hypernuclear production with proton beams
* Hypernuclear magnetic moments with the CBM setup

Double-strangeness hypernuclei with secondary produced =-

* Using developed technology with nuclear emulsions and machine
learning models by the RIKEN High Energy Nuclear Physics Laboratory

* With kaon trigger by the CBM detector (not mandatory) for hybrid
method

Secondary meson beam line together with the CBM setup



High Energy Nuclear Physics Lab. at RIKEN
since 2019

Hypernuclear physics with
* Heavyion beams

* Machine learning + Emulsion
Mesic-nuclei and mesic-atoms

Short-range correlations for NN and AN in exotic nuclei
Very precise neutron imaging and CT
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