

Hyperon interactions: the state-of-the-art and applications

Institute of Space Sciences Laura Tolós

Physics opportunities with proton beams at SIS100

6-9 February 2024 Wuppertal University Europe/Berlin timezone

- Hyperons and where to find them
- YN and YY interactions
- Hypernuclei
- Hyperons in matter
- Hyperons and Neutron Stars
- The Hyperon Puzzle
- Present and Future

Hyperons and where to find them

A hyperon is a baryon containing one or more strange quarks

Hyperon	Quarks	l(J₽)	Mass (MeV)
Δ	uds	O(I/2+)	1115
Σ^+	uus	1(1/2+)	1189
Σο	uds	1(1/2+)	1193
Σ-	dds	1(1/2+)	1197
Ξo	USS	1/2(1/2+)	1315
Ξ-	d 55	1/2(1/2+)	1321
Ω-	<mark>8</mark> 55	0(3/2+)	1672

credit: I. Vidana

The study of hypernucleus allows for

new spectroscopy
information on strong and weak interactions between hyperons and nucleons

In Neutron Stars

YN and YY interactions

- Study strangeness in nuclear physics
- Provide input for hypernuclear physics and astrophysics

hypernucleus

Scarce YN scattering data due to the short life of hyperons and the low-density beam fluxes

 ΛN and ΣN : < 50 data points ΞN very few events

NN: > 5000 data for E_{lab}<350 MeV

Data from hypernuclei:

- more than 40 Λ-hypernuclei
 (ΛN attractive)
- few $\Lambda \Lambda$ hypernuclei
- $(\Lambda\Lambda$ weak attraction)
- few Ξ-hypernuclei(ΞN attractive)
- evidence of 1 Σ -hypernuclei ? (Σ N repulsive)

Data on femtoscopy!

Theoretical approaches to YN and YY

• Meson exchange models (Juelich/Nijmegen models)

To build YN and YY from a NN meson-exchange model imposing SU(3)_{flavor} symmetry Juelich: Holzenkamp, Holinde, Speth '89; Haidenbauer and Meißner '05 Nijmegen: Maesen, Rijken, de Swart '89; Rijken, Nagels and Yamamoto '10

Chiral effective field theory approach (Juelich-Bonn-Munich group)
To build YN and YY from a chiral effective Lagrangian similarly to NN
interaction
Juelich-Bonn-Munich: Polinder, Haidenbauer and Meißner '06; Haidenbauer,
Deterbauer Keisen Meißner Meißner Meißner '06; Haidenbauer,

Petschauer, Kaiser, Meißner, Nogga and Weise '13 Kohno '10; Kohno '18

• Quark model potentials

To build YN and YY within constituent quark models

Fujiwara, Suzuki, Nakamoto '07 Garcilazo, Fernandez-Carames and Valcarce '07 '10

 V_{low k} approach
 Garcilazo, Fernandez-Carames and Valcarce '07 '10 To calculate a "universal" effective low-momentum potential for YN and YY using RG techniques
 Schaefer, Wagner, Wambach, Kuo and Brown '06

• Lattice calculations (HALQCD/NPLQCD)

To solve YN and YY interactions on the lattice

HALQCD: Ishii, Aoki, Hatsuda '07; Aoki, Hatsuda and Ishii '10; Aoki et al '12 **NPLQCD:** Beane, Orginos and Savage '11; Beane et al '12

ΛN and ΣN scattering

 $T = V + V \frac{1}{E_0 - H_0 + i\eta} T$

LO: H. Polinder, J.H., U. Meißner, NPA 779 (2006) 244 NLO: J.H., N. Kaiser, et al., NPA 915 (2013) 24 Jülich '04: J.H., U.-G. Meißner, PRC 72 (2005) 044005

Hypernuclei

credit: A. Parreno

Double A hypernuclei

credit: A. Sanchez-Lorente

Also Ξ hypernuclei @ BNL, KEK ${}^{12}C(K^-, K^+){}^{12}_{\Xi^-}Be$ $K^- + p \rightarrow \Xi^- + K^+$

Laboratories: BNL, CERN, KEK, JLab, DAφNE, GSI, FAIR

Reactions:

Binding energy of Λ hypernuclei

Hypertriton lifetime puzzle

Binding energy of different hypernuclei as function of the mass number

Binding energy saturates at about -30 MeV for large nuclei

Single-particle model reproduces the data quite well Gal et al 2016 Expected $\tau({}^{3}_{\Lambda}H) = \tau(\Lambda)$ \Leftrightarrow observed: $\tau({}^{3}_{\Lambda}H) < \tau(\Lambda)$

Conflicting measurements by STAR(2018) and ALICE(2019) of the hypertriton lifetime triggered the revived experimental and theoretical interest. Recent data solved the puzzle!

Hyperons in matter

A and Σ in dense matter

 $\mathbf{G} + \mathbf{G} + \mathbf{G} + \mathbf{G} = V + V \frac{Q_{\text{pauli}}}{E_0 - H_0} G$

 $k_F = 1.35 \text{ fm}^{-1} \ (\rho_0 = 0.166 \text{ fm}^{-3})$

	EFT LO	EFT NLO
۸ [MeV]	550 · · · 700	500 · · · 650
<i>U</i> ^(0)	-38.0 • • • -34.4	-28.2 · · · -22.4
<i>U</i> _Σ (0)	28.0 • • • 11.1	17.3 • • • 11.9

- Empirical value of Λ binding in nuclear matter ~27-30 MeV

- ΣN (I=3/2): discussion about repulsion or ⁴⁰ attraction, where ${}^{3}S_{1}$ - ${}^{3}D_{1}$ component is decisive. A repulsive ${}^{3}S_{1}$ - ${}^{3}D_{1}$ interaction is chosen in accordance to data on Σ^{-} atoms ${}^{-60}_{-60}$ and (π^{-} ,K⁺) inclusive spectra for Σ^{-} formation in heavy nuclei as well as lattice* indications

Haidenbauer and Meißner, NPA 936 (2015) 29

* Nemura et al EPJ Web of Conferences 175 (2018) 05030

Λ in dense matter: including three-body forces

Three-body forces are required to reproduce few-nucleon binding energies, scattering observables and nuclear saturation in non-relativistic many-body approaches

Λ in dense matter in χ EFT: Hyperon puzzle?

n,p,e⁻, μ^- , Λ in β -equilibrium χ EFT (NN, NNN, NNA) + meson-exchange (NY)

 Λ concentration is small but still present in 2M_o NS

Only symmetric and neutron matter

 χ EFT NN, NNN, NY, NNY

 Λ in NS energetically unfavorable, but only neutrons and Λ are considered

Hyperons and Neutron Stars

- produced in core collapse supernova explosions, usually observed as pulsars
- usually refer to compact objects with M≈1-2 M_☉ and R≈10-12 Km
- extreme densities up to 5-10 ρ_0 (n₀=0.16 fm⁻³ => ρ_0 =3•10¹⁴ g/cm³)
- magnetic field : B ~ 10 8..16 G
- temperature: T ~ 10 6...11 K
- observations: masses, radius, gravitational waves...

Masses

credit: P. Freire

Radius

NICER PSR J0030+0451

 $\begin{array}{l} {\sf R}_{eq} = 13.02_{\text{-}1.06}{}^{+1.24} \text{ km} \\ {\sf M} = 1.44 \, _{\text{-}0.14}{}^{+0.15} \, {\sf M}_{\odot} \\ {\sf Miller \ et \ al. \ '19} \end{array}$

 $\begin{array}{l} {\sf R}_{eq} = 12.71_{-1.19}^{+1.14} \, \text{km} \\ {\sf M} = 1.34_{-0.16}^{+0.15} \, {\sf M}_{\odot} \\ {\sf Riley \ et \ al. \ `19} \end{array}$

NICER PSR J0740+6620

 $\begin{array}{l} {\sf R}_{eq} {=} 13.71_{{-}1.5}{}^{{+}2.6}\,{\sf km} \\ {\sf M} {=} 2.08\,_{{-}0.07}{}^{{+}0.07}\,{\sf M}_{\odot} \\ {\sf Miller \ et \ al.\ `21} \end{array}$

 $\begin{array}{l} \mathsf{R}_{eq} = 12.39_{-0.98}^{+1.30} \, \text{km} \\ \mathsf{M} = 2.072_{-0.066}^{+0.067} \, \mathsf{M}_{\odot} \\ \mathsf{Riley \ et \ al. \ '21} \end{array}$

Observations

GW170817

Abbot et al. (LIGO-VIRGO) '17 '18

..also GW190425, GW190814

What about Hyperons?

First proposed in 1960 by Ambartsumyan & Saakyan

Hyperon	Mass (MeV/c ²)
Λ	1115.57 ± 0.06
Σ^+	1189.37 ± 0.06
Σ^0	1192.55 ± 0.10
Σ^{-}	1197.50 ± 0.05
Ξ^0	1314.80 ± 0.8
Ξ^{-}	1321.34 ± 0.14
Ω^{-}	1672.43 ± 0.14

 $p \ e^- \rightarrow n \ \nu_e$

Traditionally neutron stars were modeled by a uniform fluid of neutron rich matter in β -equilibrium $n \rightarrow p \ e^- \ \overline{\nu}_e$

but more exotic degrees of freedom are expected, such as **hyperons**, due to:

- high value of density at the center and
- the rapid increase of the nucleon chemical potential with density

Hyperons might be present at $n \sim (2-3)n_0$!!!

β-stable hyperonic matter

 μ_N is large enough to make N->Y favorable

$$n + n \rightarrow n + \Lambda$$

$$p + e^{-} \rightarrow \Lambda + v_{e^{-}}$$

$$n + n \rightarrow p + \Sigma^{-}$$

$$n + e^{-} \rightarrow \Sigma^{-} + v_{e^{-}}$$

$$\mu_i = b_i \mu_n - q_i \mu_e$$
$$\sum_i x_i q_i = 0$$

Vidana '18

The Hyperon Puzzle

The Hyperon Puzzle

Scarce experimental information:

- data from several single Λ - and few Ξ - hypernuclei, and few double Λ hypernuclei

few YN scattering data
 (~ 50 points) due to
 difficulties in preparing
 hyperon beams and no
 hyperon targets available

- YN data from femtoscopy

The presence of hyperons in neutron stars is energetically probable as density increases. However, it induces a strong softening of the EoS that leads to maximum neutron star masses < 2M_☉

Solution?

- Stiffer YN and YY interactions
- hyperonic 3-body forces
- ➢ push of Y onset by ∆-isobars or meson condensates
- > quark matter below Y onset
- dark matter, modified gravity theories...

Space missions to study the interior of NS

Constraints from pulse profile modelling of rotation-powered pulsars with eXTP

and multimessenger astronomy!

Present and Future

A lot of experimental and theoretical effort has been invested to understand hyperon-nucleon and hyperon-hyperon interactions

Hyperon-nucleon and hyperon-hyperon interactions are crucial for describing hypernuclei and understanding long-standing problems, such as the hypertriton lifetime puzzle

The presence of hyperons in neutron stars is energetically probable as density increases. However, it induces a strong softening of the equation of state that leads to maximum neutron star masses $< 2M_{\odot}$ This is known as The Hyperon Puzzle

The future of hyperon physics relies on particle and nuclear experiments as well as X-ray and multimessenger astronomy

https://compose.obspm.fr/

S. Typel, M. Oertel, T. Klaehn, D. Chatterjee, V. Dexheimer, C. Ishizuka, M. Mancini, J. Novak, H. Pais, C.Providencia, A. Raduta, M. Servillat and L. Tolos **CompOSE Reference Manual, Eur. Phys. J. A 58 (2022) 11, 221**