Application of chiral YN interactions to light hypernuclei

Andreas Nogga, Forschungszentrum Jülich

Workshop on "Physics opportunities with proton beams at SIS100" Wuppertal, Germany, February 6th-9th, 2024

- Motivation
- Chiral YN & YY interactions
- Uncertainty of Λ separation energies and size of chiral 3BF contributions
- Determination of CSB contact interactions and Λn scattering length
- Application to A = 7 and 8 hypernuclei
- Light $\Lambda\Lambda$ hypernuclei and Ξ hypernuclei
- Conclusions & Outlook

in collaboration with Johann Haidenbauer, Hoai Le, Ulf Meißner

Hypernuclear interactions

Why is understanding hypernuclear interactions interesting?

- hyperon contribution to the EOS, neutron stars, supernovae
- "hyperon puzzle"
- Λ as probe to nuclear structure
- flavor dependence of baryon-baryon interactions

(SN1987a, Wikipedia)

February 8th, 2024

. . .

February 8th, 2024

(from Panda@FAIR web page)

+++0

= 140

140

40

He

44

Hypernuclei

Only few YN data. Hypernuclear data provides additional constraints.

- AN interactions are generally weaker than the NN interaction
 - naively: core nucleus + hyperons
 - "separation energies" are quite independent from NN(+3N) interaction
- no Pauli blocking of Λ in nuclei
 - good to study nuclear structure
 - even light hypernuclei exist in several spin states
- *non-trivial constraints* on the YN interaction even from lightest ones
- size of YNN interactions? need to include Λ-Σ conversion!

Chiral NN & YN & YY interactions

EFT based approaches

Chiral EFT implements chiral symmetry of QCD (adapted from Epelbaum, 2008)

- symmetries constrain exchanges of Goldstone bosons
- relations of two- and three- and more-baryon interactions
- breakdown scale $\approx 600 700 \, MeV$
- Semi-local momentum regularization (SMS) up to N²LO (for YN, YY within NRW Fair)

Retain flexibility to adjust to data due to counter terms **Regulator required** — cutoff/different orders often used to estimate uncertainty $\Lambda - \Sigma$ and $\Lambda \Lambda - \Sigma \Sigma - \Xi N$ conversion is explicitly included (3BFs only in N²LO)

February 8th, 2024

SMS NLO/N²LO interaction

 $\Lambda p \rightarrow \Lambda p$

Selected results (show $\Lambda = 550 \,\text{MeV}$, others are very similar in quality)

February 8th, 2024

- - most relevant cross sections very similar in NLO and N²LO
 - similar to NLO19 •
 - alternative fit (see later)

ICH

Forschungszent

SMS NLO/N²LO interaction

new data (Miwa(2022)) at higher energies provides new constraints!

 $\Sigma^+ p \rightarrow \Sigma^+ p$

February 8th, 2024

YY interaction

adjusted to data & LQCD (HAL QCD)

updated version consistent with Ξ -nuclei (only change in $\Xi N_{3}S_{1}$)

Tools

Need reliable predictions for hypernuclei to further constrain interactions

Faddeev-Yakubovsky (FY) equations for A = 3 and 4 (momentum space)

- long distance tails of wave functions can be well represented
- uses Jacobi coordinates separating off CM motion
- · chiral interactions can be directly used
- hugh linear eigenvalue problem (dimension 10⁹x10⁹) even for A=4 systems
- is feasible only for $A \le 4$

(see AN, Glöckle, Kamada, 2002))

Jacobi-no core shell model (J-NCSM) for $A \ge 4$ (HO space)

- smaller dimensions allow to tackle p-shell nuclei
- exact antisymmetrization of wave functions can be prepared
- uses Jacobi coordinates separating off CM motion
- chiral interactions require similarity renormalization group (SRG) evolution
- long distance wave functions require large HO model spaces

(see Liebig et al., 2016; Le et al., 2020 & 2021)

Uncertainty analysis to A = 3 to 5

Order N²LO requires combination of chiral NN, YN, 3N and YNN interaction

Assuming a negligible numerical uncertainty and the following ansatz for the order by order convergence

$$X_{K} = X_{ref} \sum_{k=0}^{K} c_{k} Q^{k} \quad \text{where} \quad Q = M_{\pi}^{eff} / \Lambda_{b} \quad (X_{ref} \text{ LO, exp., max, ...})$$

a Bayesian analysis of the uncertainty is possible (see Melendez et al. 2017,2019)

Extracting c_k for $k \le K$ from calculations and assuming identical probability distributions for c_k for k > K the uncertainty is given by the distribution of

$$\delta X_K = X_{ref} \sum_{k=K+1}^{\infty} c_k Q^k$$

Numerical uncertainties negligible (carefully checked!). Uncertainty due to missing higher orders is most relevant! February 8th, 2024

T7

Application to $^3_{\Lambda}H$

JÜLICH Forschungszentrum

- + Q, u_0 and u_0 are chosen using all available data (NN and YN convergence)
- uncertainties are extracted using c_k for NN or YN convergence
- use c_k of individual hypernuclei
 - individual uncertainties for NN and YN convergence for each separation energy consistent with experimental data cutoff dependence always at least NLO (YNN missing!)

Application to ${}^{5}_{\Lambda}$ He and summary

- without YNN: sizable uncertainties at A = 4 and 5
- A = 3 sufficiently accurate
- NN/YN dependence small at least for A = 3

Т

CSB contributions to YN interactions

CSB LECs and predict An scattering

(so far: NLO13 and NLO19) February 8th, 2024

Fit of contact interactions

The values of the LECs are in 10^4 GeV^{-2}

Size of LECs as expected by power counting

$$\frac{m_d - m_u}{m_u + m_d} \left(\frac{M_\pi}{\Lambda}\right)^2 C_{S,T} \approx 0.3 \cdot 0.04 \cdot 0.5 \cdot 10^4 \,\text{GeV} \propto 6 \cdot 10^{-3} \cdot 10^4 \,\text{GeV}$$

- Problem: large experimental uncertainty of experiment
- here only fit to central values to test theoretical uncertainties February 8th, 2024 (see Haidenbauer, Meißner, AN (2021))

Application to A = 7 and 8

- YN interaction adjusted to the hypertriton YNN is small
- based only on YN interactions: splitting for ${}^4_\Lambda H$ is not well reproduced YNN(?)

Title Suppressed Bucker Excession A Hatan Cheavier hypernuclei

- accidentally small YNN interaction?

Table & Brobability of finding Ap and Ap in principle A. A structure functions computed using the YN NLO19(500) potential. The SRG-induced YNN interaction is also included in the calculations for ${}^{4}_{\Lambda}$ He/ ${}^{4}_{\Lambda}$ H. The A=7,8 wavefunctions were computed at the magic SRG-flow paramet **&** of λ_{magic} **MEQ 3**(500)

7

Application to A = 7 and 8

- CSB of singlet and triplet states interferes differently
- CSB still not fixed experimental uncertainty is large
- scenario studied here is only marginally consistent with CSB in A = 8

February 8th, 2024

т

SB [keV]

 $\Lambda - \Lambda(1^{+})$

S = -2 hypernuclei — $^{6}_{\Lambda\Lambda}$ He

- + $\Lambda\Lambda$ excess binding energy
 - $\Delta B_{\Lambda\Lambda} = B_{\Lambda\Lambda} 2B_{\Lambda}$ $= 2E \begin{pmatrix} A-1\\ \Lambda \end{pmatrix} E \begin{pmatrix} A\\ \Lambda\Lambda \end{pmatrix} E \begin{pmatrix} A-2\\ \Lambda \end{pmatrix}$

- NN, YN and YY interactions contribute
- use NN and YN that describe nuclei and single Λ hypernuclei
- small λ_{YY} dependence (no induced YYN forces used!)
- LO overbinds YY
- NLO predicts binding fairly well

Can an S = -2 bound state for A = 4,5 be expected?

(Le, Haidenbauer, Meißner, AN, 2021)

YN NLO19(650) $\lambda_{YN} = 0.868 \, \text{fm}^{-1}$

February 8th, 2024

2.25

17

• A = 5: $\Lambda\Lambda$ excess binding energy & A = 4: binding energy

- A = 5: LO & NLO predicts bound state
- A = 4: NLO unbound, LO at threshold to binding (see also Contessi et al., 2019)
- excess energy larger for A = 5 than for A = 6 (in contrast to Filikhin et al., 2002!)

S = -2 bound state for A = 5 can be expected,

for A = 4 less likely but not ruled out!

Ξ hypernuclei

- experimentally accessible: Ξ^- capture process (experimental data for $^{15}_{\Xi}{
 m C}$ and $^{12}_{\Xi}{
 m Be}$
- + $\Xi N \Lambda \Lambda$ conversion channel open: possibly short life times/difficult calculations
- + HAL QCD & chiral YY interactions indicate suppression $\Xi N \Lambda\Lambda$ transition
- ΞN interaction relevant: Ξ is often the second hyperon to appear in neutron matter

Identify possibly interesting states:

calculations based on chiral interactions neglecting $\Xi N - \Lambda \Lambda$ transitions (keeping $\Xi N - \Lambda \Sigma, \Sigma \Sigma$) states are bound states

finetuning of ¹¹S₀ interaction to correct for missing $\Lambda\Lambda$ channel neglect YN interaction to avoid transitions to $\Lambda\Lambda$ perturbative width estimates indicate small widths \checkmark Here: look at $\frac{7}{\Xi}$ H (exp. expected), $\frac{5}{\Xi}$ H, $\frac{4}{\Xi}$ H and $\frac{4}{\Xi}$ n explore possible bound states and their widths

Ξ hypernuclei

 Ξ separation energies (NLO(500) and SMS N⁴LO⁺(450))

	B_{Ξ} [MeV]	Г [MeV]
$\frac{4}{2}$ H(1 ⁺ , 0)	0.48 ± 0.01	0.74
$\frac{4}{2}n(0^+, 1)$	0.71 ± 0.08	0.2
${}^{4}_{\Xi}n(1^{+},1)$	0.64 ± 0.11	0.01
${}^{4}_{\Xi}\mathrm{H}(0^{+},0)$	_	_
${}_{\Xi}^{5}{ m H}({1\over 2}^{+},{1\over 2})$	2.16 ± 0.10	0.19
${}^{7}_{\Xi}{ m H}({1\over 2}^+,{3\over 2})$	3.50 ± 0.39	0.2

	$V^{S=-2}$			
	$11 S_0$	$^{31}S_0$	$^{13}S_1$	$^{33}S_1$
$\frac{4}{\Xi}$ H(1 ⁺ , 0)	- 1.95	0.02	- 0.7	- 2.31
$\frac{4}{\Xi}n(0^+, 1)$	- 0.6	0.25	-0.004	-0.74
$\frac{4}{\Xi}n(1^+, 1)$	-0.02	0.16	- 0.13	-1.14
${}^4_{\Xi} H(0^+, 0)$	-0.002	0.08	-0.01	-0.006
${}_{\Xi}^{5}\mathrm{H}(1/2^{+},1/2)$	- 0.96	0.94	-0.58	- 3.63
$_{\Xi}^{7}$ H(1/2 ⁺ , 3/2)	- 1.23	1.79	- 0.79	- 6.74

February 8th, 2024

(Le, Haidenbauer, Meißner, AN, 2021)

CH

Forschungsze

Conclusions & Outlook

- YN & YY interactions not well understood
 - scarce YN data, almost no YY data
 - more information necessary to solve "hyperon puzzle"
- Hypernuclei provide important constraints
 - CSB of ΛN scattering & ${}^4_{\Lambda}\text{He}$ / ${}^4_{\Lambda}\text{H}$
 - ${}^3_{\Lambda}H$ is used to constrain the spin dependence
 - Light S = -2 hypernuclei provide important information on $\Lambda\Lambda \Sigma\Sigma \Xi N$ forces
 - new experiments planned at J-PARC, MAMI, J-Lab, FAIR,...
- New SMS YN interactions
 - give an accurate description low energy YN data
 - order LO, NLO and N²LO allow uncertainty quantification
 - have a non-unique determination of contact interactions (data necessary)
- Chiral 3BF need to be included
 - NLO uncertainty is sizable in A = 4 and beyond
 - chiral 3BFs are formulated (Petschauer et al., (2016)) and the implementation is currently checked

