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Hypernuclear interactions
Why is understanding hypernuclear interactions interesting? 

• hyperon contribution to the EOS, neutron stars, supernovae 
• "hyperon puzzle" 
• Λ as probe to nuclear structure 
• flavor dependence of baryon-baryon interactions 

￼2

(SN1987a, Wikipedia)

4. Acceptance of the SKS spectrometer

The effective solid angle of SKS (d!) was calculated
with a Monte Carlo simulation code GEANT "25#. The effects
of energy loss and multiple scattering through a trajectory
were included in this calculation. The effective solid angle
was averaged on the distribution of the beam profile obtained
from the experimental data. It was calculated as a function of
scattering angle $%& and momentum $p& as follows:

d!$% ,p &!!
%"$1/2&'%

%#$1/2&'%
d cos %!

0

2(
d)

$
number of events accepted
number of events generated , $3.5&

where events were generated uniformly from %" 1
2 '% to %

# 1
2 '% in the polar angle, from 0 to 2( in the azimuthal

angle, and from p" 1
2 'p to p# 1

2 'p in the momentum.

5. Total systematic errors

The error on the beam normalization and the experimental
efficiency factors was obtained to be %7% by adding in
quadrature assuming no correlations among the factors. As
for the effective solid angle of SKS, the possible change
caused by the long-term fluctuation of the beam profile was
taken into account as a systematic error, which was estimated
to be %1%. The error on the target thickness is shown in
Table I. The total systematic error on the cross section for
each target was obtained combining these errors; %9% for
*
89Y and *

12C, and %10% for *
51V.

The consistency among the cross sections obtained in the
different experimental cycles was examined by using the
12C((#,K#) data. As shown in Table III, the cross sections
of the *

12C ground-state peak, calculated separately for each
experimental cycle, agreed quite well within the statistical
errors.

F. Background level

The background levels for all the spectra were examined
by looking at the events in the region where the binding
energy is larger than that for the ground state of a produced
* hypernucleus. The backgrounds were almost uniform and
found to be less than 0.03 +b/srMeV for all the spectra.
The target-empty ((#,K#) data were analyzed using the

same analysis program as that for the normal ((#,K#) data.
The background was almost uniform and estimated to be less
than 0.04 +b/srMeV.
On the basis of the analyses, we assumed the backgrounds

around the bound regions of the obtained spectra were neg-
ligible and uniform.

IV. EXPERIMENTAL RESULTS

The hypernuclear mass spectra of *
89Y, *

51V, and *
12C $thin

target& are shown in Figs. 5, 6, and 7. The vertical scale is
shown in the average cross section obtained in the scattering
angles from 2 to 14 ° in the laboratory frame, which is de-
fined as follows:

,̄2° –14°-!
%!2°

%!14°" d,

d! # d! $ !
%!2°

%!14°
d! . $4.1&

The horizontal scale is shown in the binding energy calcu-
lated by Eq. $3.2&. For convenience, they are shown in the
tabular form in Tables IV, V, and VI.
Qualities of the spectra discussed in the last section are

summarized in Table VII.

A. !
89Y

The *
89Y spectrum showed characteristic bump structures

which reflect the major shell structure of the * orbits
coupled to the 0g9/2

"1 neutron-hole state. The widths for the p,
d, and f orbits were significantly wider than expected from
the energy resolution of 1.65 MeV $FWHM& and became
wider for the * orbits with higher angular momenta; the
widths were obtained to be 2.4%0.2, 3.0%0.2, and 4.6
%0.5MeV for the p, d, and f orbits by fitting each major
bump with a single Gaussian. In particular, the widest bump
of the f orbit appears to split into two peaks. In the present
experiment, the energy resolution can be accurately esti-

FIG. 5. Hypernuclear mass spectra of *
89Y without $up& and with

$down& fitting curves described in the text. The quoted errors are
statistical.
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only interact via the two-body ΛN potential. As a matter of
fact, within the AFDMC framework hypernuclei turn out to
be strongly overbound when only the ΛN interaction is
employed [34,35]. The inclusion of the repulsive three-
body force [model (I)], stiffens the EOS and pushes the
threshold density to 0.34ð1Þ fm−3. In the inset of Fig. 1 the
neutron and lambda fractions are shown for the two
HNM EOSs.
Remarkably, we find that using the model (II) for ΛNN

the appearance of Λ particles in neutron matter is ener-
getically unfavored at least up to ρ ¼ 0.56 fm−3, the largest
density for which Monte Carlo calculations have been
performed. In this case the additional repulsion provided by
the model (II) pushes ρthΛ towards a density region where
the contribution coming from the hyperon-nucleon poten-
tial cannot be compensated by the gain in kinetic energy. It
has to be stressed that (I) and (II) give qualitatively similar
results for hypernuclei. This clearly shows that an EOS
constrained on the available binding energies of light
hypernuclei is not sufficient to draw any definite conclusion
about the composition of the neutron star core.
The mass-radius relations for PNM and HNM obtained

by solving the Tolman-Oppenheimer-Volkoff equations
[62] with the EOSs of Fig. 1 are shown in Fig. 2. The

onset of Λ particles in neutron matter sizably reduces the
predicted maximum mass with respect to the PNM case.
The attractive feature of the two-body ΛN interaction leads
to the very low maximum mass of 0.66ð2ÞM⊙, while the
repulsive ΛNN potential increases the predicted maximum
mass to 1.36ð5ÞM⊙. The latter result is compatible with
Hartree-Fock and Brueckner-Hartree-Fock calculations
(see for instance Refs. [2–5]).
The repulsion introduced by the three-body force plays a

crucial role, substantially increasing the value of the Λ
threshold density. In particular, when model (II) for the
ΛNN force is used, the energy balance never favors the
onset of hyperons within the density domain that has been
studied in the present work (ρ ≤ 0.56 fm−3). It is interest-
ing to observe that the mass-radius relation for PNM up to
ρ ¼ 3.5ρ0 already predicts a NS mass of 2.09ð1ÞM⊙ (black
dot-dashed curve in Fig. 2). Even if Λ particles appear at
higher baryon densities, the predicted maximum mass will
be consistent with present astrophysical observations.
In this Letter we have reported on the first quantum

MonteCarlo calculations for hyperneutronmatter, including
neutrons andΛ particles. As already verified in hypernuclei,
we found that the three-body hyperon-nucleon interaction
dramatically affects the onset of hyperons in neutron matter.
When using a three-body ΛNN force that overbinds hyper-
nuclei, hyperons appear at around twice the saturation
density and the predicted maximum mass is 1.36ð5ÞM⊙.
By employing a hyperon-nucleon-nucleon interaction
that better reproduces the experimental separation energies
of medium-light hypernuclei, the presence of hyperons is
disfavored in the neutron bulk at least up to ρ ¼ 0.56 fm−3

and the lower limit for the predicted maximum mass is
2.09ð1ÞM⊙. Therefore, within the ΛN model that we have
considered, the presence of hyperons in the core of the
neutron stars cannot be satisfactorily established and thus
there is no clear incompatibility with astrophysical obser-
vations when lambdas are included. We conclude that in
order to discuss the role of hyperons—at least lambdas—in
neutron stars, the ΛNN interaction cannot be completely
determined by fitting the available experimental energies in
Λ hypernuclei. In other words, the Λ-neutron-neutron
component of the ΛNN force will need both additional
theoretical investigation, possibly within different frame-
works such as chiral perturbation theory [63,64], and a
substantial additional amount of experimental data, in
particular for highly asymmetric hypernuclei and excited
states of the hyperon.

We would like to thank J. Carlson, S. C. Pieper, S.
Reddy, A.W. Steiner, W. Weise, and R. B. Wiringa for
stimulating discussions. The work of D. L. and S. G. was
supported by the U.S. Department of Energy, Office of
Science, Office of Nuclear Physics, under the NUCLEI
SciDAC grant and A. L. by the Department of Energy,
Office of Science, Office of Nuclear Physics, under
Contract No. DE-AC02-06CH11357. The work of S. G.
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FIG. 2 (color online). Mass-radius relations. The key is the
same as of Fig. 1. Full dots represent the predicted maximum
masses. Horizontal bands at ∼2M⊙ are the observed masses of
the heavy pulsars PSR J1614-2230 [18] and PSR J0348þ 0432
[19]. The grey shaded region is the excluded part of the plot due
to causality.

TABLE II. Fitting parameters for the function f defined in
Eq. (4) for different hyperon-nucleon potentials.

Hyperon-nucleon potential c1½MeV& c2½MeV&
ΛN −71.0ð5Þ 3.7(3)
ΛN þ ΛNN (I) −77ð2Þ 31.3(8)
ΛN þ ΛNN (II) −70ð2Þ 45.3(8)
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ρΛ ¼ xρ are the neutron and hyperon densities, respec-
tively. The energy per particle can be written as

EHNMðρ; xÞ ¼ ½EPNMðð1 − xÞρÞ þmn&ð1 − xÞ

þ ½EPΛMðxρÞ þmΛ&xþ fðρ; xÞ: ð2Þ

To deal with the mass difference Δm≃ 176 MeV between
neutrons and lambdas the rest energy is explicitly taken into
account. The energy per particle of PNM EPNM has been
calculated using the AFDMC method [42,43] and it reads

EPNMðρnÞ ¼ a
!
ρn
ρ0

"
α
þ b

!
ρn
ρ0

"
β
; ð3Þ

where the parameters a, α, b, and β are reported in Table I.
We parametrized the energy of pure lambda matter EPΛM

with the Fermi gas energy of noninteracting Λ particles.
Such a formulation is suggested by the fact that in the
Hamiltonian of Eq. (1) there is no ΛΛ potential. The reason
for parametrizing the energy per particle of hyperneutron
matter as in Eq. (2) lies in the fact that, within AFDMC
calculations, EHNMðρ; xÞ can be easily evaluated only for a
discrete set of x values. They correspond to a different
number of neutrons (Nn ¼ 66; 54; 38) and hyperons
(NΛ ¼ 1; 2; 14) in the simulation box giving momentum
closed shells. Hence, the function fðρ; xÞ provides an
analytical parametrization for the difference between
Monte Carlo energies of hyperneutron matter and pure
neutron matter in the (ρ; x) domain that we have consid-
ered. Corrections for the finite-size effects due to the
interaction are included as described in Ref. [60] for both
nucleon-nucleon and hyperon-nucleon forces. Finite-size
effects on the neutron kinetic energy arising when using
different number of neutrons have been corrected adopting
the same technique described in Ref. [61]. Possible addi-
tional finite-size effects for the hypernuclear systems have
been reduced by considering energy differences between
HNM and PNM calculated in the same simulation box, and
by correcting for the (small) change of neutron density.
As can be inferred by Eq. (2), both hyperon-nucleon

potential and correlations contribute to fðρ; xÞ, whose
dependence on ρ and x can be conveniently exploited
within a cluster expansion scheme. Our parametrization is

fðρ; xÞ ¼ c1
xð1 − xÞρ

ρ0
þ c2

xð1 − xÞ2ρ2

ρ20
: ð4Þ

Because the ΛΛ potential has not been included in the
model, we have only considered clusters with at most one

Λ. We checked that contributions coming from clusters of
two or more hyperons and three or more neutrons give
negligible contributions in the fitting procedure. We have
also tried other functional forms for fðx; ρÞ, including
polytropes inspired by those of Ref. [20]. Moreover, we
have fitted the Monte Carlo results using different x data
sets. The final results weakly depend on the choice of
parametrization and on the fit range, in particular for the
hyperon threshold density. The resulting EOSs and mass-
radius relations are represented by the shaded bands in
Fig. 1 and Fig. 2. The parameters c1 and c2 corresponding
to the centroids of the figures are listed in Table II.
Once fðρ; xÞ has been fitted, the chemical potentials for

neutrons and lambdas are evaluated via

μnðρ; xÞ ¼
∂EHNM

∂ρn ; μΛðρ; xÞ ¼
∂EHNM

∂ρΛ ; ð5Þ

where EHNM ¼ ρEHNM is the energy density. The hyperon
fraction as a function of the baryon density, xðρÞ, is
obtained by imposing the condition μΛ ¼ μn. The Λ
threshold density ρthΛ is determined where xðρÞ starts being
different from zero.
In Fig. 1 the EOS for PNM (green solid curve) and HNM

using the two-body ΛN interaction alone (red dotted curve)
and two- plus three-body hyperon-nucleon force in the
original parametrization (I) (blue dashed curve) are dis-
played. As expected, the presence of hyperons makes the
EOS softer. In particular, ρthΛ ¼ 0.24ð1Þ fm−3 if hyperons

TABLE I. Fitting parameters for the neutron matter EOS of
Eq. (3) [42].

a½MeV& α b½MeV& β

13.4(1) 0.514(3) 5.62(5) 2.436(5)
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FIG. 1 (color online). Equations of state. Green solid curve
refers to the PNM EOS calculated with the AV8’þ UIX
potential. The red dotted curve represents the EOS of hypermatter
with hyperons interacting via the two-body ΛN force alone. The
blue dashed curve is obtained including the three-body hyperon-
nucleon potential in the parametrization (I). Shaded regions
represent the uncertainties on the results as reported in the text.
The vertical dotted lines indicate the Λ threshold densities ρthΛ . In
the inset, neutron and lambda fractions corresponding to the two
HNM EOSs.

PRL 114, 092301 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

6 MARCH 2015

092301-3

(Hotchi et al. (2001))(Lonardoni et al. (2015))

89Y(π+,K+)



February 8th, 2024

Hypernuclei

￼3

(from Panda@FAIR web page)

• ΛN interactions are generally weaker than the NN  interaction 
• naively: core nucleus + hyperons 
• „separation energies“ are quite  

independent from NN(+3N) interaction  

• no Pauli blocking of Λ in nuclei  
• good to study nuclear structure 
• even light  hypernuclei exist in  

several spin states  

• non-trivial constraints 
on the YN interaction even  
from lightest ones  

• size of YNN interactions? 
need to include Λ-Σ conversion!

Only few YN data. Hypernuclear data provides additional 
constraints.



5 (+1) NN/YN (YY)  
short range parameters

23(+5)  NN/YN (YY)  
short range parameters

chiral SU(2) symmetry of QCD. The symmetry breaking pattern places stringent
constraints on the interaction of the Goldstone bosons. In particular, they do
not interact with hadrons at very low energies in the so-called chiral limit (i.e.,
the limit of massless up and down quarks). If the typical hadronic momenta in-
volved in a process are of the order of the pion mass, one is still sufficiently close
to this non-interacting limit in order for the scattering amplitude to be calculable in
perturbation theory (via the so-called chiral expansion). This method is applicable
in the Goldstone boson and single-baryon sectors and is referred to as chiral per-
turbation theory (ChPT), see [2] for a recent review. On the other hand, the in-
teraction between nucleons does not vanish and, in fact, remains strong in the
above-mentioned limit. Indeed, the appearance of shallow bound=virtual states
signals the failure of perturbation theory already at very low energies. One way
to circumvent this difficulty in the few-nucleon sector is to apply ChPT to the
irreducible part of the amplitude (i.e., the one which does not involve contributions
generated by iterations of the Schr€oodinger equation) which gives rise to the nuclear
forces [3].

In this talk, I discuss some recent developments in chiral EFT for few-nucleon
systems. In Sect. 2, I briefly outline the structure of nuclear forces in few lowest
orders of the chiral expansion. Selected applications to few-nucleon observables
are discussed in Sect. 3. I end with the summary and outlook in Sect. 4.

2 Nuclear forces in chiral EFT

The hierarchy of the nuclear forces in EFT without explicit delta degrees of free-
dom at lowest orders in the chiral expansion is depicted in Fig. 1. The diagrams

Fig. 1 Hierarchy of nuclear forces in chiral EFT based on Weinberg’s power counting [3]. Solid and

dashed lines denote nucleons and pions, respectively. Solid dots, filled circles and filled squares refer

to the leading, subleading and sub-subleading vertices, respectively. The crossed square denotes 2N

contact interactions with 4 derivatives

58 E. Epelbaum

(adapted from Epelbaum, 2008)

no additional contact 
terms in NN/YN (YY) 

BB force 3B force 4B force

February 8th, 2024

Chiral NN & YN & YY interactions

Chiral EFT implements chiral symmetry of QCD 
• symmetries constrain exchanges of Goldstone bosons 
• relations of two- and three- and more-baryon interactions 
• breakdown scale ￼  
• Semi-local momentum regularization (SMS) up to N2LO (for YN, YY within NRW Fair)

≈ 600 − 700 MeV

￼4

EFT based approaches

Retain flexibility to adjust to data due to counter terms 
Regulator required — cutoff/different orders often used to estimate uncertainty 

 and  conversion is explicitly included (3BFs only in N2LO)Λ−Σ ΛΛ − ΣΣ − ΞN



Selected results  (show ￼ , others are very similar in quality) Λ = 550 MeV
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SMS NLO/N2LO interaction 
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Fig. 5 Cross section for Σ−p → Λn as a function of plab. Same description of the curves as in Fig. 1. Data are from the E40
Collaboration [8] for the momentum regions 470− 550 and 550− 650 MeV/c, respectively, and from Refs. [57,60].

based on NLO19 exhibit a sizable cutoff dependence. It
is due to the fact that the hadronic amplitude is over-
all attractive for some cutoffs and repulsive for others
so that there is either a destructive or constructive in-
terference with the attractive Coulomb interaction. In
case of a destructive interference there is a small dip
in the differential cross section at very forward angles.

Data with high resolution would be needed in order to
resolve that issue.

Results for the transition Σ−p → Λn are presented
in Fig. 5. Also in this case the predictions of the SMS
Y N potentials and those of NLO19 are rather simi-
lar. Specifically, all interactions yield a reaction cross
section in line with the E40 data [8]. The angular dis-
tributions are likewise reproduced, cf. Fig. 5 (center
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Fig. 7 Cross section for Λp as a function of plab. Same description of the curves as in Fig. 1. Data are from Refs. [55] (filled
circles), [56] (filled squares), [68,69] (open triangles), [70] (open squares), [71] (open circles) and [6] (inverted triangles).

pected to be provided by the future E86 experiment at
J-PARC [42].

Results for ΛN phase shift in the S- and P -waves
are shown in Figs. 8 and 9. Like in case of ΣN dis-
cussed above, the predictions for the 1S0 and 3S1 par-
tial waves are strongly constrained by fitting the cross
section data. And, as already mentioned, like in our
previous works [38,39,76] the empirical binding energy

of the hypertriton 3
ΛH is used as a further constraint.

Thereby we can exploit the fact that the spin-singlet
and triplet amplitudes contribute with different weights
to the Λp cross section and to the 3

ΛH binding energy,
see Eq. (9) in [39]. Without that feature it would not be
possible to fix the relative strength of the spin-singlet
and spin-triplet S-wave components of the Λp interac-
tion. A more detailed discussion on the hypertriton will

• most relevant cross sections very similar 
in NLO and N2LO 

• similar to NLO19 
• alternative fit (see later) 

N2LO(550)
NLO(550)
NLO19
N2LO(550) (alter.)

J. Haidenbauer et al. EPJ A 59, 63 (2023). 
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new data (Miwa(2022))  at higher energies provides new constraints!
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Fig. 1 Cross section for Σ+p scattering as a function of plab. Results are shown for the SMS NLO (dash-dotted) and N2LO
(solid) Y N potentials with cutoff 550 MeV. The dashed line corresponds to an alternative fit at N2LO, see text. The cyan band is
the result for NLO19 [39]. The dotted line is the result for NLO19(600) with readjusted C3SD1

, see text. Data are from the E40
experiment [9] for the momentum regions 440− 550 and 550− 650 MeV/c, respectively, and from Refs. [58,64].

experiments. Such data could also help to pin down the
P -wave contributions more reliably since higher partial
waves should be much less important. For completeness,
let us mention that the fitting ranges considered for es-
tablishing the SMS NN potential are plab ! 480 MeV/c
at NLO and plab ! 540 MeV/c at N2LO [31].

The predictions by NLO19 are definitely at odds
with the E40 experiment. However, it should be said

that the pronounced rise of the cross section for back-
ward angles, excluded by the data, is mainly due to an
accidental choice of the LEC C3SD1

in the ΣN I = 3/2
contact interaction in [38,39]. Its value can be easily re-
adjusted, without any change in the overall quality of
those Y N potentials. Pertinent results, for NLO19(600)
as example, are indicated by dotted lines in Fig. 1.

SMS NLO/N2LO interaction 

Eur. Phys. J. A            (2023) 59:63 Page 9 of 26    63 

Fig. 3 ΣN I = 3/2 phase shifts: 1S0 and 3S1–3D1. Same description
of the curves as in Fig. 1

{27} irrep of SU(3), cf. Table 2, were fixed either from NN
results (exploiting SU(3) symmetry) or from predictions of
Y N models. Earlier efforts for establishing the ΣN I = 3/2
phase shifts, based on the differential cross section of Eisele
et al. (lower-left of Fig. 1), can be found in Refs. [72,73].
Our predictions for the phase shifts are displayed in Figs. 2
and 3. For illustration we include the NN phase shifts in the
3P0,1,2 partial waves (circles) which, as said, would be iden-
tical to the ones for ΣN with I = 3/2 under strict validity
of SU(3) symmetry. It is interesting to see that the difference
is indeed fairly small. In comparison, the predictions of the
chiral potentials for 1P1, not constrained by SU(3), vary siz-
ably. The results for the 1S0 and 3S1 partial waves shown in
Fig. 3 are, of course, strongly constrained by the available
low-energy cross section data. The behavior of the 1S0 is
qualitatively similar to that in the NN case [31], as expected
from the approximate SU(3) symmetry. One can observe a
large difference in the results for the mixing angle ϵ1 between
the SMS Y N potentials and NLO19. As discussed above, its
large value is the reason for the rise of the cross section at
backward angles, cf. Fig. 1. At the time when NLO19 and
NLO13 were established, the existing data did not allow to
fix the relevant LEC (C3SD1

) reliably. However, it can be re-
adjusted (see the dotted line) without changing the overall
χ2 and then the pertinent results can be brought in line with
the E40 measurement.

3.2 The Σ− p channel

Results for Σ− p elastic scattering are presented in Fig. 4.
The SMS Y N potentials produce a slightly weaker energy
dependence of the integrated cross section than NLO19.
In the momentum region of the new E40 data [7], plab =
500–700 MeV/c, the predictions of all our Y N potentials
are similar and in agreement with the experiment. Also the
differential cross sections agree with the experiment, cf.
the lower panel of Fig. 4. It should be said, however, that
the proper behavior in forward direction remains somewhat
unclear since the experimental information is too sparse in
that angular region. Nonetheless, the data points available
for the momentum region 550–650 MeV/c could point to a
somewhat steeper rise for small angles. The predictions based
on NLO19 exhibit a sizable cutoff dependence. It is due to
the fact that the hadronic amplitude is overall attractive for
some cutoffs and repulsive for others so that there is either
a destructive or constructive interference with the attractive
Coulomb interaction. In case of a destructive interference
there is a small dip in the differential cross section at very
forward angles. Data with high resolution would be needed
in order to resolve that issue.

Results for the transition Σ− p → Λn are presented in
Fig. 5. Also in this case the predictions of the SMS Y N
potentials and those of NLO19 are rather similar. Specifi-
cally, all interactions yield a reaction cross section in line
with the E40 data [8]. The angular distributions are likewise
reproduced, cf. Fig. 5 (center and left of the lower panel). One
should keep in mind that in case of NLO19 no actual fitting
of the P-wave LECs was performed. The ones belonging to
the {27} and {10∗} irreps were taken over from fits to NN P-
waves, exploiting SU(3) symmetry constraints, whereas the
others were fixed qualitatively by requiring that the contri-
bution of each P-wave to the Λp cross section for momenta
above the ΣN threshold remains small [38]. We note that
for Σ− p → Λn partial waves up to J = 8 are needed to
achieve converged results for the differential cross section at
600 MeV/c.

In the context of the inelastic Σ− p data by Engelmann et
al. [57], we would like to point to a footnote in that paper
which emphasizes the role of the Σ− lifetime in their deter-
mination of the cross sections. The fact that the present value
is almost 10 % smaller [74] suggests that the actual cross
sections could be smaller, too.

There are no new data for the charge-exchange reaction
Σ− p → Σ0n. The predictions of chiral EFT are in agree-
ment with the existing experimental evidence, as one can see
in Fig. 6.

123

N2LO(550) (alter.)

N2LO(550)
NLO(550)
NLO19
N2LO(550) (alter.)
NLO19(600) (alter.)

J. Haidenbauer et al. EPJ A 59, 63 (2023). 
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Fig. 1. Ξ−p induced cross sections. The black/red bands rep-
resent results at NLO, based on the new fit with readjusted
LECs C̃10∗

3S1
and C̃10

3S1
, see text. The hatched bands are re-

sults for the NLO interaction from ref. [2] while the grey/green
bands are those from a LO calculation [26]. Experiments are
from Ahn et al. [4] and Aoki et al. [5].

interaction in the isospin I = 0 channel so that we simply
take over the values for C̃8a

3S1
fixed in ref. [2].

Results for those ΞN channels where data are available
are presented in fig. 1. Here the hatched bands are the
NLO results from ref. [2] and the black/red bands those
of the new alternative solution. For illustration we include
also predictions obtained at leading order (LO) [26], cf.

Fig. 2. ΞN isospin I = 0 phase shifts from ref. [2]. The sym-
bols indicate preliminary results from lattice QCD calculations
by the HAL QCD collaboration for different sink-source time-
separations t [18].

the light (green) bands. As already said above, the results
for the ΛΛ → ΛΛ and Ξ−p → ΛΛ cross sections remain
unchanged and, therefore, are not reproduced here.

As visible in fig. 1, the main difference between the
ΞN interaction from ref. [2] and the new fit is that in the
former the Ξ−p elastic cross section remains strictly be-
low the upper bound while now the limit provided by the
experiment is fulfilled only in average over the given mo-
mentum range of 200 < plab < 800MeV/c. Both scenarios
are, of course, consistent with the empirical findings [4].
The phase shifts in the ΞN S-waves are summarized in
figs. 2 and 3. For completeness we show here all S-waves
though the alternative solution concerns only the 3S1-3D1

partial wave with I = 1. One can see that now the inter-
action in the latter partial wave is moderately attractive
while it was basically repulsive in our previous work [2].
Interestingly, this attraction leads to a much more pro-
nounced cusp effect at the opening of the ΛΣ channel,
comparable to what happens in the ΛN case at the open-
ing of the ΣN channel [1, 42].

Table 1 provides a summary of the pertinent S-wave
effective range parameters. Besides the ones of our chiral
EFT interactions we included values for two phenomeno-
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Fig. 3. ΞN isospin I = 1 phase shifts. The hatched band are
the 3S1 phase shifts for the interaction presented in ref. [2]. The
full band represents the one for the updated ΞN interaction
considered in the present work.

logical potential models from the literature, whose G-
matrix results will serve us as benchmark in the discussion
of in-medium properties below. The models in question are
the Nijmegen ESC08c meson-exchange potential [22] and
the quark-model potential fss2 [43]. Note that the large
and positive value of a3S1 for I = 1 in case of the Nijmegen
ESC08c potential indicates the presence of a bound state
in this partial waves. A more comprehensive overview of
ΞN effective range parameters predicted over the years
can be found in ref. [40].

As already mentioned, recently lattice QCD results
close to the physical point (Mπ = 146MeV) have become
available for the S = −2 sector from the HAL QCD Col-
laboration [18, 19]. The reported phase shifts for the ΞN
1S0 and 3S1 partial waves with isospin I = 0 are very simi-
lar to the ones predicted by our EFT interaction earlier [2].
This can be seen in fig. 2, where the phases from the lat-
tice are included for illustration. We want to emphasize,
however, that the HAL QCD results are still preliminary.
Also, we show here only the central values for different
sink-source time-separations t [44]. For the pertinent sta-
tistical errors see ref. [18]. In any case, one interesting as-
pect is that the present lattice results support the possible

existence of a virtual state in the I = 0 1S0 partial wave
very close to the ΞN threshold, predicted in [2], which can
be considered as a remnant of the H-dibaryon [45, 46]. It
is reflected in large values of the corresponding ΞN phase
shifts, see upper panel of fig. 2, and large negative values
of the scattering length, cf. table 1. It is also worthwhile
mentioning that the HAL QCD lattice simulations suggest
values around −0.65 fm for aI=0

3S1
[18], which is well within

the range predicted by our NLO potential [2].

3.2 Ξ in nuclear matter

The properties of our ΞN interaction in nuclear matter
are documented in table 2 and fig. 4. The table summa-
rizes the results for the Ξ potential depth, UΞ(pΞ = 0),
evaluated at the saturation point of nuclear matter, i.e. for
kF = 1.35 fm−1, for the NLO interaction of ref. [2] and the
updated interaction considered in the present study. For
completeness we include also an exemplary result for our
LO potential [26]. In addition, results for two potentials
from the literature are listed, namely for the Nijmegen
ESC08c potential [22] and the quark-model based poten-
tial fss2 [43].

There are indications for a moderately attractive in-
medium ΞN interaction, as already pointed out in the
Introduction. In particular, a strength of UΞ ≈ −14MeV
for the Ξ-nucleus potential is considered as the bench-
mark now [47]. This value was deduced from the initial
analysis of the BNL-E885 measurement of the spectrum
of the (K−,K+) reaction on a 12C target based on a
Woods-Saxon potential [23]. Since we calculate the Ξ-
nuclear potential in infinite nuclear matter we should,
however, not really compare our result directly with that
figure. At least this is suggested by investigations in the
literature where G-matrix calculations similar to ours
were presented and where, in addition, analyses of finite
Ξ systems were performed utilizing Ξ-nucleus potentials
derived from those G-matrices. For instance, in studies
based on the Nijmegen ESC08 potentials [13, 22] predic-
tions for Ξ-hypernuclei were reported which are appar-
ently consistent with the indications of the BNL exper-
iment [23] and with the Kiso event [6]. However, if we
take exemplary the ESC08c model, the corresponding po-
tential in nuclear matter, evaluated at saturation density,
amounts to −7MeV only [22]. In the analysis by Kohno
and Hashimoto [48] (see also ref. [49]) that is partly based
on the quark-model potential fss2 [43] the authors came
likewise to the conclusion that the BNL data do not neces-
sarily imply an attractive Ξ-nucleus potential in the order
of 14MeV. Indeed, in this work it is concluded that an al-
most zero potential is preferable.

Table 2 reveals what has been already anticipated in
sect. 3.1: the original NLO interaction [2] with LECs fixed
solely with the aim to meet the available experimental
constraints on Ξ−p scattering leads to unrealistic strongly
repulsive predictions for the Ξ s.p. potential. However, the
updated NLO interaction presented here makes clear that
it is possible to maintain agreement with those constraints
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Tools

￼8

Need reliable predictions for hypernuclei to further constrain interactions 

Faddeev-Yakubovsky (FY) equations for ￼  and ￼  (momentum space) 
• long distance tails of wave functions can be well represented 
• uses Jacobi coordinates separating off CM motion 
• chiral interactions can be directly used 
• hugh linear eigenvalue problem (dimension 109x109) even for A=4 systems 
• is feasible only for A ≤ 4 

A = 3 4

(see AN, Glöckle, Kamada, 2002))

Jacobi-no core shell model (J-NCSM) for ￼  (HO space) 
• smaller dimensions allow to tackle p-shell nuclei 
• exact antisymmetrization of wave functions can be prepared  
• uses Jacobi coordinates separating off CM motion 
• chiral interactions require similarity renormalization group (SRG) evolution  
• long distance wave functions require large HO model spaces

A ≥ 4

(see Liebig et al., 2016; Le et al., 2020 & 2021)
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Order N2LO requires combination of chiral   interaction 

Need calculation of separation energies (use Faddeev, Yakubovsky eq. or J-NCSM)  
and use different orders for uncertainty estimate.  

Assuming a negligible numerical uncertainty and the following ansatz for the order by order 
convergence    

                    ￼       where   ￼     (￼    LO, exp., max, …)  

a Bayesian analysis of the uncertainty is possible  (see  Melendez et al. 2017,2019)  

Extracting ￼  for ￼  from calculations and assuming identical probability distributions  
for ￼  for ￼  the uncertainty is given by the distribution of  

                                            ￼  

Numerical uncertainties negligible (carefully checked!).  
Uncertainty due to missing higher orders is most relevant!

NN, YN, 3N and YNN

XK = Xref

K

∑
k=0

ck Qk Q = Meff
π /Λb Xref

ck k ≤ K
ck k > K

δXK = Xref

∞

∑
k=K+1

ck Qk

￼9

Uncertainty analysis  to ￼  to ￼A = 3 5
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Application to ￼3ΛH

12

Fig. 5 Comparison of the convergence with respect to the chiral order of the employed NN (left) and YN (right) potentials
for 3

⇤H, 4
⇤He(0+), 4

⇤He(1+)and 5
⇤He (from top to bottom).

• ￼ , ￼  and ￼  are chosen using all available data (NN and YN convergence) 

• uncertainties are extracted using ￼  for NN or YN convergence  

• use ￼  of individual hypernuclei 

Q ν0 τ0

ck

ck

DoB 95%
DoB 68%
￼ΛNN = 450 MeV
cutoff dependence of N4LO+

exp.

individual uncertainties for NN and YN convergence for each separation energy

consistent with experimental data 
cutoff dependence always at least NLO (YNN missing!)
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Application to ￼  and summary5
ΛHe

12

Fig. 5 Comparison of the convergence with respect to the chiral order of the employed NN (left) and YN (right) potentials
for 3

⇤H, 4
⇤He(0+), 4

⇤He(1+)and 5
⇤He (from top to bottom).

• without YNN: sizable uncertainties at ￼  and 5 
• ￼  sufficiently accurate 
• NN/YN dependence small at least for ￼

A = 4
A = 3

A = 3 13

nucleus �68(NN) �68(YN)

3
⇤H 0.011 0.015

4
⇤He (0+) 0.157 0.239

4
⇤He (1+) 0.114 0.214

5
⇤He 0.529 0.881

Table 5 Half the size of the 68% DoB intervals for the ⇤ sep-
aration energy at NLO based on the convergence with respect
to the YN and NN interactions (in MeV).

quantity for the comparison to the data shown in red
since all calculations do not include the leading chiral
YNN interactions. Note that we include the experimen-
tal separation energies of 4⇤H and 4

⇤He in the figure since
the calculations have been performed with isospin con-
serving interactions that cannot properly predict the
charge symmetry breaking di↵erences of the separation
energies of these mirror hypernuclei. It can be seen that
all experimental energies are within the 68% DoB in-
tervals. The NLO uncertainties are substantial and sig-
nificantly larger than the experimental uncertainties for
A = 4 and 5. Only for 3

⇤H, the experimental and theo-
retical uncertainty are comparable, justifying our choice
to constrain the strength of the YN interaction in the
1S0 partial wave by the 3

⇤H separation energy [25,62].

In order to extract an estimate of the size of YNN in-
teractions from these results, we have summarized half
the size of the NLO 68% DoB interval in Table 5 for
both, the NN and the YN convergence. The depen-
dence on the NN interaction is generally a factor two
smaller than the one on the YN interaction. It is how-
ever larger than the one anticipated from older calcu-
lations comparing results for di↵erent phenomenolog-
ical NN interactions [11]. Incidentally, the values are
roughly in line with the “model uncertainties” from
Ref. [22], though one has to keep in mind that the latter
results are obtained in an entirely di↵erent way, see the
discussion in the preceding subsection.

The relevant quantity for assessing the size of YNN
interactions is the NLO 68% DoB for YN since this
quantity is larger. It is reassuring that the estimate for
the YNN force for 3

⇤H is around 15 keV and therefore
smaller than the experimental uncertainty. This esti-
mate is smaller than the result of a first explicit (though
incomplete) evaluation of 3BFs for 3

⇤H by Kamada et
al. [63], namely of the part due to 2⇡ exchange, that
suggests a contribution of around 50-100 keV. It re-
mains to be seen whether this 2⇡ contribution will be
partially canceled by short range interactions once the
LECs have been adjusted to other light nuclei.

For A = 4, the YNN contribution can be expected
to be of the order of 200 keV. Also this estimate is in
line with previous results. In Ref. [18], we observed that
the NLO13 and NLO19 YN potentials exhibit a regula-
tor dependence of up to 210 keV and variations of the
separation energies of up to 320 keV due to dispersive
e↵ects associated with the ⇤N -⌃N coupling which we
both can take as estimate for YNN contributions. The
estimate here, based on the convergence pattern of the
chiral expansion, is of similar size. For 5

⇤He, the compar-
ison of NLO19 and NLO13 can again provide hints to
the size of YNN interactions. We found in Ref. [37] that
the result for NLO13 and NLO19 di↵ers by 1.1 MeV
which gives a lower bound of possible YNN force con-
tributions. Therefore, also the estimate in Table 5 of
900 keV appears reasonable.

Additionally, we employed the approach proposed
by Epelbaum, Krebs and Meißner (EKM) [26] for es-
timating the uncertainty as outlined in the appendix.
This estimated error depends strongly on the expan-
sion parameter chosen. It turns out that for standard
values of Q = 0.31, the estimates are well in line with
the Bayesian results. For Q = 0.4, the EKM estimates
are somewhat larger but still of similar order as the
statistically motivated ones.

It is also interesting to look at the prospective N2LO
uncertainties once the leading YNN interactions are in-
cluded. In our analysis, we find 6, 100 and 350 keV for
the A=3, 4 and 5 hypernuclei, respectively. These esti-
mates are however strongly dependent on the expansion
parameter Q. For example, for Q = 0.3 as in [24], we
find N2LO uncertainties of 3, 50 and 200 keV.

5 Summary

In this work, we have investigated various aspects rele-
vant for the theoretical uncertainties of calculations of
separation energies of ⇤ hypernuclei with A  5. These
light hypernuclei have attracted some attention recently
because their properties are mostly determined by the
S-wave YN interactions which are reasonably well con-
strained by the available YN data and the hypertriton
separation energy. To a great extent the e↵ort for pro-
viding a quantitative assessment of the uncertainties of
our few-body calculations was motivated by the study
of Gazda et al. [22] which suggested that even the em-
ployed NN interaction might have an significant impact
on the uncertainty of the predicted hyperon separation
energies.

In the present work, we considered two possible sour-
ces for uncertainties. First, there is the numerical un-
certainty which, in our case, is caused by discretization
and/or truncation of the model space in the no-core
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CSB contributions  to YN interactions

￼12

π

Λ N

Λ N

Λ N

Λ N

Constraints on the Λ-Neutron Interaction... Page 3 of 15   105 

Fig. 1 CSB contributions involving pion exchange, according to Dalitz and von Hippel [1], due to Λ − "0 mixing (left two
diagrams) and π0 − η mixing (right diagram).

Fig. 2 CSB contributions from K±/K 0 exchange (left) and from contact terms (right)

2.2 CSB in Chiral EFT

As noted by Dalitz and von Hippel many decades ago [1], Λ − "0 mixing leads to a long-ranged CSB
contribution to the ΛN interaction due to pion exchange, see Fig. 1. The strength of the potential can be
estimated from the electromagnetic mass matrices,

⟨"0|δm|Λ⟩ = [m"0 − m"+ + mp − mn]/
√

3,

⟨π0|δM2|η⟩ = [M2
π0 − M2

π+ + M2
K+ − M2

K 0 ]/
√

3 (1)

and subsumed in terms of an effective ΛΛπ coupling constant

fΛΛπ =
[

−2
⟨"0|δm|Λ⟩
m"0 − mΛ

+ ⟨π0|δM2|η⟩
M2

η − M2
π0

]

fΛ"π . (2)

Based on the latest PDG mass values [29], one obtains

fΛΛπ = f (Λ−"0)
ΛΛπ + f (η−π0)

ΛΛπ ≈ (−0.0297 − 0.0106) fΛ"π . (3)

In this context, let us mention that there are also lattice QCD calculations of Λ − "0 mixing [30–33].
In our implementation of CSB within chiral EFT, we follow closely the arguments given in pertinent

studies of isospin-breaking effects in the nucleon-nucleon (NN ) system, see Refs. [26–28]. According to Ref.
[27], the CSB contributions at leading order are characterized by the parameter ϵM2

π/Λ
2 ∼ 10−2, where

ϵ ≡ md−mu
md+mu

∼ 0.3 and Λ ∼ Mρ . In particular, one expects a potential strength of V CSB
BB ∼ (ϵM2

π/Λ
2) VBB .

At order n = 2 (NLØ in the notation of Ref. [28]), there are contributions from isospin violation in the pion-
baryon coupling constant, which in the ΛN case arise from the aforementioned "0 −Λ mixing as well as from
π0 − η mixing. In addition, there are contributions from short range forces (arising from ρ0 −ω mixing, etc.).
In chiral EFT, such forces are simply represented by contact terms involving LECs (Fig. 2 right) that need to
be fixed by a fit to data. Contributions at n = 1 (LØ) are due to a possible Coulomb interaction between the
baryons in question and due to mass differences between Mπ± and Mπ0 . Such contributions do not arise in
the ΛN system. However, in the extension to SU(3), there is CSB induced by the MK±-MK 0 mass difference,
see left side of Fig. 2. We take that into account in our calculation, since it is formally at leading order. But
because the kaon mass is rather large compared to the mass difference, its effect is actually very small. For a
general overview, we refer the reader to Table 1 in Ref. [28].
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• formally leading contributions: 
Goldstone boson mass difference 

      —  very small due to the small  
      relative difference of kaon masses

• subleading but most important  
— effective CSB  ΛΛπ coupling constant (Dalitz, van Hippel, 1964) 

• so far less considered, but equally important 
   —   CSB contact interactions (for singlet and triplet) 

Aim: use A=4 hypernuclei to determine the two unknown 
   CSB LECs and predict Λn scattering  

(so far:  NLO13 and NLO19)
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one main scenario (CSB1) 
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Table 4 CSB contact terms for the 1S0 (s) and 3S1 (t) partial waves, cf. Eq. (4), fixed from the present experimental splittings
∆E(0+) = 233 keV and ∆E(1+) = −83 keV (CSB1)

Λ NLO13 NLO19

CCSB
s CCSB

t CCSB
s CCSB

t

500 4.691 × 10−3 −9.294 × 10−4 5.590 × 10−3 −9.505 × 10−4

550 6.724 × 10−3 −8.625 × 10−4 6.863 × 10−3 −1.260 × 10−3

600 9.960 × 10−3 −9.870 × 10−4 9.217 × 10−3 −1.305 × 10−3

650 1.500 × 10−2 −1.142 × 10−3 1.240 × 10−2 −1.395 × 10−3

The values of the LECs are in 104 GeV−2

that in Λp. Furthermore, there are noticeably smaller changes for the triplet Λn scattering length in those two
scenarios. In particular, for CSB1 the values for Λn and Λp are fairly close to that without CSB.

Table 2 also provides the results of the full (non-perturbative) calculation of the CSB splittings of the 0+
and 1+ states for A = 4 hypernuclei for all three CSB scenarios. In addition, the predictions for the original
Y N potentials, without any explicit CSB force, and for the case where only the one-boson-exchange CSB
contributions (CSB-OBE) (Λ − #0 mixing, η − π0 mixing, K±/K 0 exchange) are added. For CSB1 and
CSB3, the CSB of the separation energy agrees within experimental uncertainties with the values mentioned
above. For CSB2, there are some deviations to the pre-2014 situation. Given that this is an outdated scenario
anyway and that CSB2 required a complete refit of the Y N interaction, we refrained from further improving
the description of CSB. The obtained splittings without CSB contact terms confirm the conclusion from earlier
studies [7,34,35] that the standard mechanisms can only explain a very small fraction of the experimentally
found CSB in A = 4 hypernuclei. In particular, because of cancellations between the OBE contributions,
once η − π0 mixing is treated properly [4], the overall results do not really improve when including those.
In addition, the large variation between the NLO13 and NLO19 results is a clear signal for the missing CSB
contact terms.

Now we analyze in more detail the results for scenario CSB1, the one which is in line with the present
experimental situation. Corresponding results are summarized in Table 3. There is a clear and universal trend
for a sizable splitting between the Λp and Λn scattering length in the singlet state, once we impose the
reproduction of ∆E(0+) and ∆E(1+). The splitting in the triplet state is much smaller and actually goes into
the opposite direction. In particular, for reproducing the experimentally observed CSB splitting in the A = 4
hypernuclei, in the 1S0 state the Λn interaction is required to be more attractive than for Λp, whereas for 3S1
the Λn interaction is slightly less attractive than that for Λp.

With regard to the Λn scattering lengths the results for the singlet channel are quite robust. The predictions
are in the narrow range of −3.2 to −3.3 fm and practically independent of the cutoff and whether NLO13 or
NLO19 is used. There is more variation in case of the triplet state which, however, is simply a reflection of the
situation observed already in the calculation without CSB forces. One very interesting aspect is that, adding
the CSB interaction to our NLO potentials established in Refs. [20,21], improves also the overall description
of the Λp data as quantified by the χ2 value – without any refit, see Table 2. It is due to the noticeable reduction
of the strength of the Λp interaction in the singlet channel by the needed CSB force, cf. the pertinent scattering
lengths in the table. In fact, one could interpret this as sign for a consistency of the available Λp data with
the present values of the CSB level splittings in the A = 4 hypernuclei. In this context we want to mention
that a recent measurement of the Λp momentum correlation function in pp collisions at 13 TeV [47] likewise
indicates that a slightly less attractive Λp interaction is favored by the data.

Finally, note that ∆aCSB
1S0 ≡ aΛp − aΛn is ≈ 0.62± 0.08 fm for the 1S0 partial wave, which is comparable

to but noticeably smaller than the CSB effects in the pp and nn scattering lengths where it amounts to
∆aCSB = app − ann = 1.5 ± 0.5 fm [12]. On the other hand, in case of the triplet state, the prediction
is with ∆aCSB

3S1 ≈ −0.10 ± 0.02 fm significantly smaller and of opposite sign. Here, in the ΛN case, the
uncertainty is estimated solely from the differences between NLO13 and NLO19 and the cutoff variations. A
precise experimental determination of the CSB in A = 4 hypernuclei will allow one to obtain the scattering
length with the accuracy estimated here. As can be seen in Table 2, different scenarios for CSB lead to rather
different values of the scattering length. This is the main lesson from this work. Obviously, for reliable values
one needs a confirmation of the presently available experimental data, with best possible accuracy.

• Problem: large experimental uncertainty of experiment 
• here only fit to central values to test theoretical  

uncertainties 

  105 Page 10 of 15 J. Haidenbauer et al.

Table 6 Perturbative estimate of different contributions to the CSB of 4
ΛHe and 4

ΛH for the 0+ state based on 4
ΛHe wave functions

for scenario CSB1

Interaction ⟨T ⟩CSB ⟨VY N ⟩CSB V CSB
NN ∆E pert

Λ ∆EΛ

NLO13(500) 44 200 16 261 265(14)
NLO13(550) 46 191 20 257 261(14)
NLO13(600) 44 187 20 252 256(14)
NLO13(650) 38 189 18 245 249(14)
NLO19(500) 14 224 5 243 249(14)
NLO19(550) 14 226 7 247 252(14)
NLO19(600) 22 204 12 238 243(14)
NLO19(650) 26 207 12 245 250(14)

The SMS N4LO+ (450) NN interaction [40] was used in all cases .The contributions of the kinetic energy ⟨T ⟩CSB, the Y N
interaction ⟨VY N ⟩CSB and the contribution of the nuclear core V CSB

NN = ⟨VNN ⟩CSB −E(3He)+E(3H) are separated and combined
to the total CSB ∆E pert

Λ . The direct comparison of separation energies for full calculations of 4
ΛHe and 4

ΛH, ∆EΛ, is also given.
All energies are in keV

Table 7 Perturbative estimate of different contributions to the CSB of 4
ΛHe and 4

ΛH for the 1+ state based on 4
ΛHe wave functions

for scenario CSB1

Interaction ⟨T ⟩CSB ⟨VY N ⟩CSB VCSB
NN ∆E pert

Λ ∆EΛ

NLO13(500) 5 − 90 15 − 71 − 66(14)
NLO13(550) 5 − 86 18 − 63 − 56(14)
NLO13(600) 4 − 83 19 − 59 − 53(14)
NLO13(650) 3 − 80 17 − 59 − 55(14)
NLO19(500) 1 − 84 3 − 80 − 75(14)
NLO19(550) 2 − 81 2 − 77 − 72(14)
NLO19(600) 4 − 82 6 − 71 − 67(14)
NLO19(650) 4 − 79 9 − 66 − 69(14)
Same interactions and notations as in Table 6

Fig. 3 CSB of 4
ΛHe/4ΛH in the 0+ (top, red circles) and 1+ (bottom,blue circles) state compared to the currently best experimental

values (red and blue bands). The error bars reflect the numerical uncertainty

(see Haidenbauer, Meißner, AN (2021)) 

A1 Collaboration / Nuclear Physics A 954 (2016) 149–160 159

Fig. 6. Level schemes of the mirror hypernuclei 4!H and 4!He in terms of ! binding energy. For the ground state binding 
energy of 4!H the MAMI data were used, for that of 4!He data from past emulsion experiments [3] with a systematic 
error estimate of 40 keV [22]. The B! values for the excited states were obtained from the 1+

exc → 0+
g.s. γ -ray transition 

energies [4].

6. Conclusions

The ! separation energy of 4
!H has been measured for the second time by high-precision 

decay-pion spectroscopy at MAMI. The pions were observed in two independent spectrometers 
using two targets of different thicknesses, confirming the previous results in a consistent analysis 
of both experiments. Moreover, the results proved to be consistent after further calibration of the 
absolute momentum as well as in systematic studies of the used cut conditions.

When compared to the 4
!He binding energy measured with the emulsion technique and 

adding the information from γ -ray spectroscopy the MAMI data of 4
!H lead to the level 

schemes of 4
!H and 4

!He as shown in Fig. 6. Here, the systematic error estimate of 40 keV 
from Ref. [22] for the emulsion value was used. While the ground state binding energy dif-
ference of #B 4

!(0+
g.s.) = B!(4

!He(0+
g.s.)) − B!(4

!H(0+
g.s.)) = 233 ± 92 keV is smaller as mea-

sured by the emulsion technique it still supports a sizable CSB effect in the !N interaction. 
Furthermore, it suggests a negative binding energy difference between the excited states of 
#B 4

!(1+
exc) = B!(4

!He(1+
exc)) − B!(4

!H(1+
exc)) = −83 ± 94 keV.

Most calculations performed so far resulted in much smaller binding energy differences than 
observed. Gazda and Gal have recently reported on ab initio no-core shell model calculations 
of the mirror pair using the charge-symmetric Bonn–Jülich leading-order chiral effective field 
theory hyperon–nucleon potentials plus a charge symmetry breaking !–$0 mixing vertex [13]. 
These calculations predict a large CSB ground state splitting and a CSB splitting of opposite sign 
for the excited states.

During the last years the MAMI accelerator was the only place worldwide where a precise and 
intense continuous electron beam was available for hypernuclear physics. While the total error 
of the MAMI binding energy data is of the same order than that of the compiled results from the 
emulsion technique, it is currently dominated by the systematic uncertainty of the absolute mo-
mentum calibration, which can be improved further. Current developments at MAMI are aiming 
at a higher accuracy of the calibration, which could reduce the error on the binding energy by a 
factor of four.

Together with prospects for a precise measurement of the γ transition energy of 4
!H at 

J-PARC [23], the 4
!H level scheme could become the most accurate among hypernuclei and 

provide further guidance for theory and for investigating the origin of CSB in the !N interac-
tion.

(Schulz et al.,2016; Yamamoto, 2015)

md − mu

mu + md ( Mπ

Λ )
2

CS,T ≈ 0.3 ⋅ 0.04 ⋅ 0.5 ⋅ 104 GeV ∝ 6 ⋅ 10−3 ⋅ 104 GeV

• Size of LECs as expected by power counting 
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10
describe the 1^+ in 4HL and ground state in 5HL fairly well. For 7LiLambda, NLO19 prediction is comparable to B_L extracted from counter experiments, 

Results for  with NLO13 & NLO19BΛ(A ≤ 8)

•  are fairly well 

 described by NLO19;  
NLO13 underestimates these 

4
ΛH(1+), 5

ΛHe, 7
ΛLi, 8

ΛLi

BΛ

uncertainty

| χVYNN |  based on NLO13 & NLO19 results and  
cutoff dependence.

consistent with estimates based on  
chiral truncation

(J. Haidenbauer et al. EPJA(2019), HL et al. PRC(2023))

signal of missing YNN forces

NN(3N): SMS N4LO+(N2LO)
+ SRG-induced YNNYN: NLO13,19(CSB)

HL, J. Haidenbauer, U.-G. Meißner, A. Nogga PRC 107(2023)

(see Nogga’s talk)

Title Suppressed Due to Excessive Length 7

Table 3 Probability of finding ⇤p and ⇤n pairs in the A=4-8 wavefunctions computed using
the YN NLO19(500) potential. The SRG-induced YNN interaction is also included in the
calculations for 4

⇤He/4⇤H. The A=7,8 wavefunctions were computed at the magic SRG-flow
parameter of �magic = 0.823 fm-1

1
S0

3
S1 hV Y N i

⇤p ⇤n ⇤p ⇤n
1
S0

3
S1

4
⇤He(0+) 13.92 27.60 44.54 0.42 -4.383 -3.916
4
⇤H(0+) 27.1 13.66 0.41 43.79 -4.091 -3.604

4
⇤He(1+) 14.48 13.44 42.47 27.07 -1.383 -5.743
4
⇤H(1+)

7
⇤Be 11.13 7.22 33.25 21.67 -3.728 -9.36
7
⇤Li

⇤ 9.17 9.17 27.44 27.44 -3.767 -9.319

8
⇤Be 9.49 12.23 28.68 19.34 -5.467 -9.848
8
⇤Li

E VY N SRG-VY NN |�VY NN |

⇤NN ⇤NN-⌃NN total

3
⇤H -2.31 -1.88 0.08 0.04 0.14 ⇠ 0.05

4
⇤He(1+) -9.50 -7.31 0.72 0.05 0.77 ⇠ 0.2 - 0.4

4
⇤He(0+) -10.57 -10.2 0.89 -0.02 0.90 ⇠ 0.2 - 0.3

5
⇤He(0+) -32.42 -13.61 2.40 0.15 2.57 ⇠ 0.7 - 1.0

Table 4 CSB for A = 4� 8 systems based on the N4LO+(450) NN potential in combination
with the YN NLO13(500) and NLO19(500). The NN potential is SRG-evolved to a flow param-
eter of �NN = 1.6 fm-1 while the YN NLO13 and NLO19 interactions are SRG-evolved to the
magic SRG-flow parameters �Y N = 0.765 and �Y N = 0.823 fm-1, respectively. The latter two
SRG-flow parameters are fixed to the separation energy of 5⇤He, B⇤(5⇤He,NLO13) = 2.22±0.06
and B⇤(5⇤He,NLO19) = 3.32±0.03, obtained from the full calculations which include the both
SRG-induced 3N and YNN forces [?].

(fm//keV) a
⇤p
s a

⇤n
s �as a

⇤p
t a

⇤n
t �at

NLO19(500)
-2.91 -2.91 0 -1.42 -1.41 -0.01

no CSB

CSB(500) -2.65 -3.20 0.55 -1.58 -1.47 -0.11

CSB(550) -2.64 -3.21 0.57 -1.52 -1.41 -0.11

CSB(600) -2.63 -3.23 0.6 -1.47 -1.36 -0.09

CSB(650) -2.62 -3.23 0.61 -1.46 -1.37 -0.09

• YN interaction adjusted to the hypertriton — YNN is small 
• based only on YN interactions: splitting for ￼  is not well reproduced — YNN(?) 

• NLO19 gives better results for ￼  and heavier hypernuclei  
— accidentally small YNN interaction?   

• uncertainties are numerical — no estimate of chiral uncertainties yet

4
ΛH

5
ΛHe

￼NN SMS N4LO+(450) + 3N N2LO(450)

(see Le, Haidenbauer, Meißner, AN (2023)) 
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• CSB of singlet and triplet states interferes differently 
• CSB still not fixed — experimental uncertainty is large 
• scenario studied here is only marginally consistent with CSB in ￼A = 8

11

CSB predictions for A=7-8 multiplets

3He
1/2+

• CSB predictions for A=7 are comparable to experiment.     

• yield somewhat larger CSB in A=8 doublet as compared to experiment 

‣ experimental CSB splitting for A=8 larger than  keV?40 ± 60
‣  A=4 CSB: too large? different spin-dependence?

HL, J. Haidenbauer, U.-G. Meißner, A. Nogga PRC 107(2023) 

NN:SMS +(450)N4LO

+3N: (450)N2LO
+YN: NLO13,19(CSB)

+SRG-induced YNN

(Nogga’s talk)(see Le, Haidenbauer, Meißner, AN (2023)) 
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• fit to STAR data only 
• only slight adjustment required  
• improves description to p-shell CSB 
• higher experimental accuracy is desirable 
• good example of using hypernuclei to determine YN interactions

13

Fitting LECs to new Star measurement

3He
1/2+

Δ E(0+) = BΛ(4
ΛHe, 0+) − BΛ(4

ΛH, 0+) = 233 ± 92 keV ⇒ (CSB)

Δ E(1+) = BΛ(4
ΛHe, 1+) − BΛ(4

ΛH, 1+) = −83 ± 94 keV ⇒ (CSB)
= −160 ± 140 ± 100 keV ⇒ (CSB*)

= 160 ± 140 ± 100 keV ⇒ (CSB*)

 (STAR collaboration PLB 834 (2022))

8 Hoai Le et al.

Table 7 ⇤ separation energies for A = 7 isotriplet, computed using the NLO13(500) and
NLO19(500) together with the SRG-induced YNN forces. Experiments are taken from the
compilation in Ref. [?]. The cited results by Hiyama et al. based on a four-body cluster model [?]
are those without CSB force.

with 3BFs with 2BFs Experiment

NLO19 NLO13 NLO19 NLO13

� = 0.823 � = 0.765
7
⇤Be 5.54± 0.22 4.30± 0.47 5.44± 0.03 4.53± 0.34 5.16± 0.08
7
⇤Li

⇤ 5.64± 0.28 4.42± 0.58 5.49± 0.04 4.59± 0.34 5.26± 0.03 5.53± 0.13
7
⇤He 5.64± 0.27 4.39± 0.54 5.43± 0.06 4.45± 0.35 5.55± 0.1

Table 8 ⇤ separation energies for A = 7 isotriplet, computed using the NLO13(500) and
NLO19(500) together with the SRG-induced YNN forces. Experiments are taken from the
compilation in Ref. [?]. The cited results by Hiyama et al. based on a four-body cluster model [?]
are those without CSB force.

NLO19(500) NLO13(500) Exp.

emulsion counter

7
⇤Be 5.54± 0.22 4.30± 0.47 5.16± 0.08

7
⇤Li

⇤ 5.64± 0.28 4.42± 0.58 5.26± 0.03 5.53 ± 0.13

7
⇤He 5.64± 0.27 4.39± 0.54 5.55 ± 0.1

Table 9 ⇤ separation energies for A = 7 isotriplet, computed using the NLO13(500) and
NLO19(500) together with the SRG-induced YNN forces. Experiments are taken from the
compilation in Ref. [?]. The cited results by Hiyama et al. based on a four-body cluster model [?]
are those without CSB force.

NLO19(500) CSB1 CSB1A

a⇤p
s -2.91 -2.65 -2.58

a⇤n
s -2.91 -3.20 -3.29

�as 0 0.55 0.71

a⇤p
t -1.42 -1.57 -1.52

a⇤n
t -1.41 -1.45 -1.49

�at -0.01 -0.12 -0.03

Hiyama’s A = 7 calculation [?] is performed within a four-body cluster model
(⇤+N+N+↵). Her results without CSB force are included in Table 9 and are
quite well in line with the experimental evidence, as far as the CSB splitting is
concerned. Her results with the CSB force included are 0.15 MeV for 7

⇤Be-
7
⇤Li and

0.13 MeV for 7
⇤Li-

7
⇤He according to the figures (0.2 MeV according to the text).

However, she fitted her CSB potential to the old but outdated splittings in the
A = 4 system, i.e. to the scenario CSB2. We know from our study [?] that this leads
to a di↵erent trend for the ⇤p and ⇤n singlet interactions and to a sizable e↵ect in
the triplet state. Gal [?] emphasized that her calculation failed to reproduce the

*

Recent STAR measurement suggests different CSB in A=4:

 increases;  decreasesδa(1S0) δa(3S1)
Impact on CSB in A=7,8 multiplets

• correlation between CSB in A=4( ) and A=8, 0+

independent check for A=4 CSB using A= 7 & 8 results 

• CSB* fit yields reasonable CSB in both A=7 & 8 multiplets 

and between  and A=7A = 4(1+)

13

Fitting LECs to new Star measurement

3He
1/2+

Δ E(0+) = BΛ(4
ΛHe, 0+) − BΛ(4

ΛH, 0+) = 233 ± 92 keV ⇒ (CSB)

Δ E(1+) = BΛ(4
ΛHe, 1+) − BΛ(4

ΛH, 1+) = −83 ± 94 keV ⇒ (CSB)
= −160 ± 140 ± 100 keV ⇒ (CSB*)

= 160 ± 140 ± 100 keV ⇒ (CSB*)

 (STAR collaboration PLB 834 (2022))

8 Hoai Le et al.

Table 7 ⇤ separation energies for A = 7 isotriplet, computed using the NLO13(500) and
NLO19(500) together with the SRG-induced YNN forces. Experiments are taken from the
compilation in Ref. [?]. The cited results by Hiyama et al. based on a four-body cluster model [?]
are those without CSB force.

with 3BFs with 2BFs Experiment

NLO19 NLO13 NLO19 NLO13

� = 0.823 � = 0.765
7
⇤Be 5.54± 0.22 4.30± 0.47 5.44± 0.03 4.53± 0.34 5.16± 0.08
7
⇤Li

⇤ 5.64± 0.28 4.42± 0.58 5.49± 0.04 4.59± 0.34 5.26± 0.03 5.53± 0.13
7
⇤He 5.64± 0.27 4.39± 0.54 5.43± 0.06 4.45± 0.35 5.55± 0.1

Table 8 ⇤ separation energies for A = 7 isotriplet, computed using the NLO13(500) and
NLO19(500) together with the SRG-induced YNN forces. Experiments are taken from the
compilation in Ref. [?]. The cited results by Hiyama et al. based on a four-body cluster model [?]
are those without CSB force.

NLO19(500) NLO13(500) Exp.

emulsion counter

7
⇤Be 5.54± 0.22 4.30± 0.47 5.16± 0.08

7
⇤Li

⇤ 5.64± 0.28 4.42± 0.58 5.26± 0.03 5.53 ± 0.13

7
⇤He 5.64± 0.27 4.39± 0.54 5.55 ± 0.1

Table 9 ⇤ separation energies for A = 7 isotriplet, computed using the NLO13(500) and
NLO19(500) together with the SRG-induced YNN forces. Experiments are taken from the
compilation in Ref. [?]. The cited results by Hiyama et al. based on a four-body cluster model [?]
are those without CSB force.

NLO19(500) CSB1 CSB1A

a⇤p
s -2.91 -2.65 -2.58

a⇤n
s -2.91 -3.20 -3.29

�as 0 0.55 0.71

a⇤p
t -1.42 -1.57 -1.52

a⇤n
t -1.41 -1.45 -1.49

�at -0.01 -0.12 -0.03

Hiyama’s A = 7 calculation [?] is performed within a four-body cluster model
(⇤+N+N+↵). Her results without CSB force are included in Table 9 and are
quite well in line with the experimental evidence, as far as the CSB splitting is
concerned. Her results with the CSB force included are 0.15 MeV for 7

⇤Be-
7
⇤Li and

0.13 MeV for 7
⇤Li-

7
⇤He according to the figures (0.2 MeV according to the text).

However, she fitted her CSB potential to the old but outdated splittings in the
A = 4 system, i.e. to the scenario CSB2. We know from our study [?] that this leads
to a di↵erent trend for the ⇤p and ⇤n singlet interactions and to a sizable e↵ect in
the triplet state. Gal [?] emphasized that her calculation failed to reproduce the

*

Recent STAR measurement suggests different CSB in A=4:

 increases;  decreasesδa(1S0) δa(3S1)
Impact on CSB in A=7,8 multiplets

• correlation between CSB in A=4( ) and A=8, 0+

independent check for A=4 CSB using A= 7 & 8 results 

• CSB* fit yields reasonable CSB in both A=7 & 8 multiplets 

and between  and A=7A = 4(1+)

(see Le, Haidenbauer, Meißner, AN (2023)) 
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• ￼  excess binding energy  

 ￼  

     ￼  

• NN, YN and YY interactions contribute 

• use NN and YN that describe nuclei  
            and single ￼  hypernuclei 

• small ￼  dependence (no induced YYN forces used!)  

• LO overbinds YY  

• NLO predicts binding fairly well  

Can an ￼  bound state for ￼  be expected?

ΛΛ

ΔBΛΛ = BΛΛ − 2BΛ

= 2E (A−1
ΛX) − E ( A

ΛΛX) − E (A−2X)

Λ

λYY

S = − 2 A = 4,5
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Fig. 2 BΛΛ(
6

ΛΛHe) (left) and ∆BΛΛ(
6

ΛΛHe) (right) as functions of the
flow parameter λYY . Calculations are based on the YY LO(600) (blue
triangles) and NLO(600) (red circles) potentials. Dash-dotted line with

grey band represents the experimental value and the uncertainty of the
Nagara event [11]. Same NN and YN interactions as in Fig. 1

Table 1 Probabilities (%) of finding a single and double Σ , and a Ξ hyperons in the ground-state wavefunction of 6
ΛΛHe. Note that PΣ (5

ΛHe) =
0.07%

λYY NLO(600) LO(600)

fm−1 PΛΣ PΣΣ PΞ PΛΣ PΣΣ PΞ

1.4 0.13 0.11 0.02 0.17 0.04 0.5

2.0 0.13 0.11 0.07 0.17 0.05 0.84

3.0 0.12 0.13 0.12 0.18 0.08 1.08

BΛ(
4
ΛHe) = 1

4
BΛ(

4
ΛHe, 0+)+ 3

4
BΛ(

4
ΛHe, 1+), (26)

with BΛ(
4
ΛHe, 0+(1+)) = 1.708 (0.904) MeV for the

employed NN and YN potentials [28]. By doing so, the com-
puted quantity ∆BΛΛ(

5
ΛΛHe) will be less dependent on the

spin-dependence effect of the Λ-core interactions, and, there-
fore, can be used as a measure of the ΛΛ interaction strength,
provided that the nuclear contraction effects are small. The
results for BΛΛ(

5
ΛΛHe) and ∆BΛΛ(

5
ΛΛHe) calculated for

the two interactions and a wide range of flow parameter,
1.4 ≤ λYY ≤ 3.0 fm−1, are shown in Fig. 4. Overall,
we observe a very weak dependence of these two quanti-
ties on the SRG flow parameter, like for 6

ΛΛHe, reinforcing
the insignificance of SRG-induced YYN forces. Again, the
LO interaction predicts a much larger ΛΛ-separation energy
and a more significant ΛΛ interaction strength than the one
at NLO. In either case, the ΛΛ excess energy ∆BΛΛ com-
puted for 5

ΛΛHe, slightly exceeds the corresponding one for
6

ΛΛHe, by about 0.23 and 0.5 MeV for the LO and NLO
interactions, respectively. The main deviations should come
from the nuclear-core distortion and the suppression of the
ΛΛ − ΞN coupling in 6

ΛΛHe as discussed in [18,55,56].
However, it is necessary to carefully study the impact of the
employed interactions on the results before a final conclu-
sion can be drawn. We further note that Filikhin and Gal [16]

in their Faddeev cluster calculations, based on potentials
that simulate the low-energy s-wave scattering parameters
of some Nijmegen interaction models, obtained an oppo-
site relation, namely ∆BΛΛ(

5
ΛΛHe) < ∆BΛΛ(

6
ΛΛHe). As

a consequence, our results do also not fit into the correla-
tion of ∆BΛΛ(

5
ΛΛHe) and ∆BΛΛ(

6
ΛΛHe) shown in the same

work. We will need to study more interactions in the future to
understand whether such a correlation can also be established
using chiral interactions.

It is also very interesting to point out that the ΛΛ-
separation energies BΛΛ for both 5

ΛΛHe and 6
ΛΛHe pre-

dicted by the NLO potential are surprisingly close to the
results obtained by Nemura et al., BΛΛ(

5
ΛΛHe) = 3.66 MeV,

BΛΛ(
6

ΛΛHe) = 7.54 MeV, using the modified Nijmegen
YY potential (mNDs) [13]. Finally, we provide in Table 2
the probabilities of finding a Σ (PΛΣ ), double Σ (PΣΣ ),
or a Ξ (PΞ ) in the 5

ΛΛHe ground-state wave function,
computed with the two potentials and several SRG values,
λYY = 1.4, 2.0 and 3.0 fm−1. Apparently, all the proba-
bilities including also PΞ exhibit a rather weak sensitivity
to the flow parameter λYY . The two interactions seem to
have little impact on the Σ-probabilities (PΛΣ and PΣΣ )
but strongly influence PΞ . Like in the 6

ΛΛHe system, here,
the LO potential yields considerably larger Ξ -probabilities
as compared to the values predicted by the NLO interaction.
It also clearly sticks out from Tables 1 and 2 that the probabil-

123

￼  hypernuclei — ￼S = − 2 6
ΛΛHe

￼17

NN SMS N4LO+(450)  ￼  

YN NLO19(650)  ￼

λNN = 1.6 fm−1

λYN = 0.868 fm−1

YY LO(600) 
YY NLO(600) 

Nagara Event

(Le, Haidenbauer, Meißner, AN, 2021)
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(a) EN ( 5
ΛΛHe) as a function of ω. (b) E( 5

ΛΛHe) as a function of N .

(c) BΛΛ( 5
ΛΛHe) as a function of N . (d) ∆BΛΛ( 5

ΛΛ He) as a function of N .

Fig. 3 Binding energy E , ΛΛ-separation energy BΛΛ and ΛΛ-excess ∆BΛΛ for 5
ΛΛHe computed using the YY NLO(600) interaction that is

SRG evolved to a flow parameter of λYY = 1.8 fm−1. Same notation, NN and YN interactions as in Fig. 1

Fig. 4 BΛΛ(
5

ΛΛHe) (left) and ∆BΛΛ(
5

ΛΛHe) (right) as functions of the flow parameter λYY . Calculations are based on the YY LO(600) (blue
triangles) and NLO(600) (red circles) potentials. Same NN and YN interactions as in Fig. 1

ities of finding a Σ or Ξ hyperon in 5
ΛΛHe are visibly larger

than the corresponding ones in 6
ΛΛHe. This is indeed consis-

tent with the Σ-probabilities in the ground-state wave func-
tions of their parent hypernuclei (e.g., PΣ (4

ΛHe) = 0.43 %

and PΣ (5
ΛHe) = 0.07 %), and more importantly, is con-

sistent with the suppression of particle conversions such as
ΛΛ − ΞN in p-shell hypernuclei [55].

123

￼  hypernuclei  — ￼  & ￼S = − 2 5
ΛΛHe 4

ΛΛH

￼18

NN SMS N4LO+(450)  ￼  

YN NLO19(650)  ￼

λNN = 1.6 fm−1

λYN = 0.868 fm−1

YY LO(600) 
YY NLO(600) 

• ￼ : ￼  excess binding energy  &   ￼ : binding energy  

• ￼ : LO & NLO predicts bound state  

• ￼ : NLO unbound, LO at threshold to binding (see also Contessi et al., 2019) 

• excess energy larger for ￼  than for ￼  (in contrast to Filikhin et al., 2002!) 

￼  bound state for ￼  can be expected,  

                                    for  ￼  less likely but not ruled out!

A = 5 ΛΛ A = 4
A = 5
A = 4

A = 5 A = 6
S = − 2 A = 5

A = 4
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Table 2 Probabilities (in percentage) of finding a Σ (PΛΣ ), double Σ (PΣΣ )and a Ξ (PΞ ) hyperons in 5
ΛΛHe. PΣ (4

ΛHe) = 0.43 %

λYY YY-NLO(600) YY-LO(600)

fm−1 PΛΣ PΣΣ PΞ PΛΣ PΣΣ PΞ

1.4 0.61 0.07 0.4 0.53 0.02 1.25

2.0 0.6 0.08 0.38 0.51 0.03 1.36

3.0 0.57 0.08 0.23 0.51 0.05 1.35

(a) EN ( 4
ΛΛH) as a function of ω. (b) E( 4

ΛΛH) as a function of N .

(c) E(3ΛH) as a function of N . (d) E( 4
ΛΛH) as a function of the SRG flow parameter λY Y .

Fig. 5 (a): Ground-state energies of 4
ΛΛHe as functions of ω for model

spaceN = 10−32. Calculations are performed with the YY NLO(600)
potential evolved to a flow parameter of λYY = 1.8 fm−1. (b): model
space extrapolation of E( 4

ΛΛH) with the same YY interaction as in

(a). (c): model space extrapolation of E(3
ΛH). (d): Converged E( 4

ΛΛH)
as functions of the flow parameter for the LO(600) (blue triangles) and
NLO(600) (red circles) potentials. The dashed line with grey band repre-
sents the computed E(3

ΛH) and the theoretical uncertainty, respectively.
Same NN and YN interactions as in Fig. 1

3.3 4
ΛΛH(1+, 0)

Our final exploratory s-shell hypernucleus is 4
ΛΛH. This sys-

tem has been the subject of many theoretical and experimen-
tal studies. It turned out that theoretical predictions of the sta-
bility of 4

ΛΛH against the 3
ΛH+Λ breakup are very sensitive to

the interpretations of double-strangeness hypernuclear data,
in particular, the 6

ΛΛHe hypernucleus [54]. Indeed, Nemura et
al. [13] observed a particle-stable but loosely bound state of

4
ΛΛH (just only about 2 keV below the 3

ΛH+Λ threshold for
the mNDs potential) using the fully coupled-channel stochas-

tic variational method in combination with effective YY
potentials that are fitted to reproduce the initially extracted
value of BΛΛ(

6
ΛΛHe) = 7.25±0.19 MeV [10]. The study by

Filikhin and Gal [17] indicated, however, that there is a siz-
able model dependence. The authors found no bound state
within an exact four-body (Faddeev-Yakubovsky) calcula-
tion for theΛΛpn system, but a particle-stable 4

ΛΛH hypernu-
cleus when solving the (three-body) Faddeev equation for the
ΛΛd cluster system. A more recent calculation by Contessi et
al. [25], based on the pionless EFT interaction at LO, showed
that the existence of a bound state in 4

ΛΛH is not compati-

123

￼E (3
ΛH)

(Le, Haidenbauer, Meißner, AN, 2021)
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￼  hypernucleiΞ

￼19

• experimentally accessible: ￼  capture process (experimental data for ￼  and ￼ ) 

• ￼  conversion channel open: possibly short life times/difficult calculations 

• HAL QCD & chiral YY interactions indicate suppression ￼  transition 

• ￼  interaction relevant: ￼  is often the second hyperon to appear in neutron matter 

Identify possibly interesting states:  

calculations based on chiral interactions neglecting ￼  transitions  

                         (keeping ￼ )               states are bound states  

finetuning of ￼  interaction to correct for missing ￼  channel   

neglect YN interaction to avoid transitions to ￼  

perturbative width estimates indicate small widths  ✔ 

Here:  look at ￼  (exp. expected), ￼ , ￼  and ￼   

           explore possible bound states and their widths 

Ξ− 15
Ξ C 12

Ξ Be

ΞN − ΛΛ
ΞN − ΛΛ

ΞN Ξ

ΞN − ΛΛ
ΞN − ΛΣ, ΣΣ

11S0 ΛΛ
ΛΛ

7
ΞH 5

ΞH 4
ΞH 4

Ξn
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Fig. 1 ΞN phase shifts predicted by the NLO(500) and HAL QCD
potentials (left panel) compared to those of the Nijmegen ESC08c model
(right panel). The NLO(500) results are shown by lines: 11S0 (dotted,
red), 31S0 (dash-dotted, black), 13S1 (dashed, blue) and 33S1 (dash-
double-dotted, green). The solid line indicates the 11S0 phase shift of the

re-adjusted NLO(500) potential, see text. The HAL QCD and ESC08c
results (values are taken from [18]) for 11S0, 31S0, 13S0 and 33S0 are
indicated by crosses, circles, squares, and triangles, respectively. Note
the different scales in the left and right panels

believe that this procedure allows us to capture the essential
features of the chiral ΞN interaction in the 11S0 channel reli-
ably, while guaranteeing at the same time the applicability of
the J-NCSM approach. Note that all other ΞN partial waves
are not affected by this modification anyway and ΛΣ and
ΣΣ components are included in the J-NCSM calculations.
We, however, neglect YN interactions that are expected to
give insignificant contributions but could potentially again
induce ΛΛ components to the many-body state. We post-
pone a more thorough investigation on this issue and of the
dependence of the Ξ binding energies on the chiral cutoff
ΛYY to a future study.

Finally, to speed up the convergence of the J-NCSM cal-
culations, the NN and YY interactions are evolved using
the similarity renormalization group (SRG) [43]. Thereby,
we use an SRG flow parameter of λNN = 1.6 fm-1 for
the NN interaction. This value has already been used in
Refs. [36,37] and is motivated by the observation that ordi-
nary nuclei are bound fairly realistically even if three-nucleon
forces are neglected for this λNN . The S = −2 potential
is SRG-evolved to a wide range of SRG flow parameter
(denoted generically by λYY ), namely 1.4 ≤ λYY ≤ 3.0 fm-1.
The variations of the binding energies with respect to λYY
allow one to quantify the possible contribution of the omit-
ted SRG-induced three- and more-body forces. Note that
such contributions are remarkably small for ΛΛ hypernuclei
[37]. We also explicitly take into account the electromag-
netic NN interaction [44] as well as the Coulomb point-like
interaction between Ξ− and proton. These interactions are

however not included in the SRG evolution but only added
afterwards.

It is worthwhile to compare the ΞN phase shifts of the
employed EFT interaction NLO(500) with those predicted
by the Nijmegen ESC08c [20] and the HAL QCD [22] poten-
tials. As mentioned in the introduction, the latter two interac-
tions have recently been considered in A = 3, 4 Ξ hypernu-
clear calculations by Hiyama et al. [18]. The phase shifts for
the four S-wave states, namely 11S0, 31S0, 13S1 and 33S1, are
displayed in Fig. 1. As expected, the original NLO(500) inter-
action (cf. the dotted line) and the re-adjusted potential differ
only slightly in the 11S0 phase shifts. Overall, the results by
the NLO(500) and HAL QCD interactions are qualitatively
similar to each other, but differ substantially from those of the
Nijmegen ESC08c potential. The ESC08c is strongly attrac-
tive in the 33S1 channel (leading to a deuteron-like ΞN bound
state), whereas the chiral NLO(500) (HAL QCD) interac-
tion is only moderately (weakly) attractive in this channel.
Moreover, while the 11S0 ΞN interaction is rather attractive
in the HAL QCD and NLO(500) potentials, it is actually
repulsive in the ESC08c model. Although the NLO(500)
and HAL QCD ΞN phase shifts exhibit an overall similar
trend, there are visible differences in all ΞN partial waves
except for 13S1 where there are no channel couplings. As we
will discuss later, such variations lead to qualitative differ-
ences in the predictions of the two interactions for light Ξ

systems.

123

￼  hypernucleiΞ

￼20

lines: NLO(500) 
symbols: HAL QCD
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(a)EN (4ΞH(1+, 0)) as a function of ω. (b)E(4ΞH(1+, 0)) as a function of N .

(c)BΞ(4ΞH(1+, 0)) as a function of N . (d)BΞ(4ΞH(1+, 0)) as a function of λY Y .

Fig. 2 a–c Binding energy E and Ξ separation energy BΞ for
4
Ξ H(1+, 0) computed with the YY-ΞN interaction NLO(500), SRG-
evolved to a flow parameter of λYY = 3.0 fm-1. For the NN interaction
the SMS N4LO+(450) potential [27] with λNN = 1.6 fm-1 is employed.
BΞ is measured with respect to the triton binding energy (which is
E(3H) = −8.5 MeV for the used NN interaction). a Solid lines and

symbols (with different colors) represent numerical results for different
model spaces N = 14 − 30, from top to bottom. The dashed lines are
obtained by using the ansatz Eq. (22) in [36]. b, c Horizontal (red) lines
with shaded areas indicate the converged results and the corresponding
uncertainties. d Dependence of BΞ (4

Ξ H(1+, 0)) on the flow parameter
λYY

Table 1 Ξ separation energies BΞ and estimated decay widths Γ for
A = 4 − 7 Ξ hypernuclei. All calculations are based on the YY-ΞN
interaction NLO(500) and the NN interaction SMS N4LO+(450). Both
potentials are SRG-evolved to a flow parameter of λNN = λYY =
1.6 fm-1. The values of BΞ in NNNΞ , 5

Ξ H and 7
Ξ H are measured with

respect to the binding energies of the core nuclei 3H, 4He and 6He,
respectively

BΞ [MeV] Γ [MeV]

4
Ξ H(1+, 0) 0.48 ± 0.01 0.74
4
Ξ n(0+, 1) 0.71 ± 0.08 0.2
4
Ξ n(1+, 1) 0.64 ± 0.11 0.01
4
Ξ H(0+, 0) – –
5
Ξ H( 1

2
+
, 1

2 ) 2.16 ± 0.10 0.19
7
Ξ H( 1

2
+
, 3

2 ) 3.50 ± 0.39 0.2

to the strong ΞN interaction. The Ξ− p Coulomb inter-
action contributes roughly 200, 600, and 400 keV to the
binding energies of NNNΞ , 5

Ξ H and 7
Ξ H, respectively.

Table 1 provides also an estimate of the corresponding
decay width Γ . These widths have been evaluated pertur-
batively by adapting the procedure followed by Hiyama et
al. [18,25]. Hiyama et al. have used the imaginary part of
the G matrix. Here, we employ the ΞN T -matrix in the 11S0
state from the original potential that includes the ΞN-ΛΛ

coupling [21] instead. Schematically the width amounts to
Γ ≃ −2 Im ⟨ΨBΞ |TΞN−ΞN |ΨBΞ ⟩ and involves the perti-
nent hypernuclear wave function ΨBΞ and the (off-shell) ΞN
T -matrix at the sub-threshold energy corresponding to the
bound state. One can clearly see that the three states (1+, 0),
(0+, 1) and (1+, 1) in NNNΞ are only weakly bound, pos-
sessing quite similar BΞ ’s but substantially different decay
widths. Interestingly, our result for BΞ (NNNΞ(1+, 0)) is

123
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(a)EN (4ΞH(1+, 0)) as a function of ω. (b)E(4ΞH(1+, 0)) as a function of N .

(c)BΞ(4ΞH(1+, 0)) as a function of N . (d)BΞ(4ΞH(1+, 0)) as a function of λY Y .

Fig. 2 a–c Binding energy E and Ξ separation energy BΞ for
4
Ξ H(1+, 0) computed with the YY-ΞN interaction NLO(500), SRG-
evolved to a flow parameter of λYY = 3.0 fm-1. For the NN interaction
the SMS N4LO+(450) potential [27] with λNN = 1.6 fm-1 is employed.
BΞ is measured with respect to the triton binding energy (which is
E(3H) = −8.5 MeV for the used NN interaction). a Solid lines and

symbols (with different colors) represent numerical results for different
model spaces N = 14 − 30, from top to bottom. The dashed lines are
obtained by using the ansatz Eq. (22) in [36]. b, c Horizontal (red) lines
with shaded areas indicate the converged results and the corresponding
uncertainties. d Dependence of BΞ (4

Ξ H(1+, 0)) on the flow parameter
λYY

Table 1 Ξ separation energies BΞ and estimated decay widths Γ for
A = 4 − 7 Ξ hypernuclei. All calculations are based on the YY-ΞN
interaction NLO(500) and the NN interaction SMS N4LO+(450). Both
potentials are SRG-evolved to a flow parameter of λNN = λYY =
1.6 fm-1. The values of BΞ in NNNΞ , 5

Ξ H and 7
Ξ H are measured with

respect to the binding energies of the core nuclei 3H, 4He and 6He,
respectively

BΞ [MeV] Γ [MeV]

4
Ξ H(1+, 0) 0.48 ± 0.01 0.74
4
Ξ n(0+, 1) 0.71 ± 0.08 0.2
4
Ξ n(1+, 1) 0.64 ± 0.11 0.01
4
Ξ H(0+, 0) – –
5
Ξ H( 1

2
+
, 1

2 ) 2.16 ± 0.10 0.19
7
Ξ H( 1

2
+
, 3

2 ) 3.50 ± 0.39 0.2

to the strong ΞN interaction. The Ξ− p Coulomb inter-
action contributes roughly 200, 600, and 400 keV to the
binding energies of NNNΞ , 5

Ξ H and 7
Ξ H, respectively.

Table 1 provides also an estimate of the corresponding
decay width Γ . These widths have been evaluated pertur-
batively by adapting the procedure followed by Hiyama et
al. [18,25]. Hiyama et al. have used the imaginary part of
the G matrix. Here, we employ the ΞN T -matrix in the 11S0
state from the original potential that includes the ΞN-ΛΛ

coupling [21] instead. Schematically the width amounts to
Γ ≃ −2 Im ⟨ΨBΞ |TΞN−ΞN |ΨBΞ ⟩ and involves the perti-
nent hypernuclear wave function ΨBΞ and the (off-shell) ΞN
T -matrix at the sub-threshold energy corresponding to the
bound state. One can clearly see that the three states (1+, 0),
(0+, 1) and (1+, 1) in NNNΞ are only weakly bound, pos-
sessing quite similar BΞ ’s but substantially different decay
widths. Interestingly, our result for BΞ (NNNΞ(1+, 0)) is
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(a)EN (4ΞH(1+, 0)) as a function of ω. (b)E(4ΞH(1+, 0)) as a function of N .

(c)BΞ(4ΞH(1+, 0)) as a function of N . (d)BΞ(4ΞH(1+, 0)) as a function of λY Y .

Fig. 2 a–c Binding energy E and Ξ separation energy BΞ for
4
Ξ H(1+, 0) computed with the YY-ΞN interaction NLO(500), SRG-
evolved to a flow parameter of λYY = 3.0 fm-1. For the NN interaction
the SMS N4LO+(450) potential [27] with λNN = 1.6 fm-1 is employed.
BΞ is measured with respect to the triton binding energy (which is
E(3H) = −8.5 MeV for the used NN interaction). a Solid lines and

symbols (with different colors) represent numerical results for different
model spaces N = 14 − 30, from top to bottom. The dashed lines are
obtained by using the ansatz Eq. (22) in [36]. b, c Horizontal (red) lines
with shaded areas indicate the converged results and the corresponding
uncertainties. d Dependence of BΞ (4

Ξ H(1+, 0)) on the flow parameter
λYY

Table 1 Ξ separation energies BΞ and estimated decay widths Γ for
A = 4 − 7 Ξ hypernuclei. All calculations are based on the YY-ΞN
interaction NLO(500) and the NN interaction SMS N4LO+(450). Both
potentials are SRG-evolved to a flow parameter of λNN = λYY =
1.6 fm-1. The values of BΞ in NNNΞ , 5

Ξ H and 7
Ξ H are measured with

respect to the binding energies of the core nuclei 3H, 4He and 6He,
respectively

BΞ [MeV] Γ [MeV]

4
Ξ H(1+, 0) 0.48 ± 0.01 0.74
4
Ξ n(0+, 1) 0.71 ± 0.08 0.2
4
Ξ n(1+, 1) 0.64 ± 0.11 0.01
4
Ξ H(0+, 0) – –
5
Ξ H( 1

2
+
, 1

2 ) 2.16 ± 0.10 0.19
7
Ξ H( 1

2
+
, 3

2 ) 3.50 ± 0.39 0.2

to the strong ΞN interaction. The Ξ− p Coulomb inter-
action contributes roughly 200, 600, and 400 keV to the
binding energies of NNNΞ , 5

Ξ H and 7
Ξ H, respectively.

Table 1 provides also an estimate of the corresponding
decay width Γ . These widths have been evaluated pertur-
batively by adapting the procedure followed by Hiyama et
al. [18,25]. Hiyama et al. have used the imaginary part of
the G matrix. Here, we employ the ΞN T -matrix in the 11S0
state from the original potential that includes the ΞN-ΛΛ

coupling [21] instead. Schematically the width amounts to
Γ ≃ −2 Im ⟨ΨBΞ |TΞN−ΞN |ΨBΞ ⟩ and involves the perti-
nent hypernuclear wave function ΨBΞ and the (off-shell) ΞN
T -matrix at the sub-threshold energy corresponding to the
bound state. One can clearly see that the three states (1+, 0),
(0+, 1) and (1+, 1) in NNNΞ are only weakly bound, pos-
sessing quite similar BΞ ’s but substantially different decay
widths. Interestingly, our result for BΞ (NNNΞ(1+, 0)) is
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Table 2 Contributions of different partial waves to ⟨V S=−2⟩ (first five
columns), and the total binding energy (last column) for the A = 4 − 7
Ξ hypernuclei. The results are extracted at N = 28, ω = 10 MeV
for NNNΞ , at N = 14, ω = 16 MeV for 5

Ξ H and at N = 10,

ω = 16 MeV for 7
Ξ H. All energies are given in MeV. Same interac-

tions as in Table 1. Note that the calculated binding energy of 3He(3H)
is −7.79 (−8.50) MeV

V S=−2 E
11S0

31S0
13S1

33S1 Total

4
Ξ H(1+, 0) − 1.95 0.02 − 0.7 − 2.31 − 5.21 − 8.97
4
Ξ n(0+, 1) − 0.6 0.25 − 0.004 − 0.74 − 1.37 − 9.07
4
Ξ n(1+, 1) − 0.02 0.16 − 0.13 − 1.14 − 1.30 − 9.0
4
Ξ H(0+, 0) − 0.002 0.08 − 0.01 − 0.006 − 0.11 − 6.94
5
Ξ H(1/2+, 1/2) − 0.96 0.94 − 0.58 − 3.63 − 4.88 − 31.43
7
Ξ H(1/2+, 3/2) − 1.23 1.79 − 0.79 − 6.74 − 8.04 − 33.22

Table 3 Probabilities (in %) of finding a ΞN pair in different partial-
wave states in the wave functions of A = 4 − 7 Ξ hypernuclei. Same
interactions and model spaces as in Table 1. Note that for each system
all probabilities sum up to the probability of finding a Ξ hyperon in that
system

|ΞN ⟩
|11S0⟩ |31S0⟩ |13S1⟩ |33S1⟩ J ≥ 2

4
Ξ H(1+, 0) 12.88 0.18 25.91 35.72 24.80
4
Ξ n(0+, 1) 8.24 13.32 0.23 23.29 54.73
4
Ξ n(1+, 1) 0.14 9.22 9.83 33.08 47.56
4
Ξ H(0+, 0) 0.02 11.87 14.65 0.11 73.33
5
Ξ H(1/2+, 1/2) 4.82 12.18 14.37 35.53 32.59
7
Ξ H(1/2+, 3/2) 3.71 12.92 11.11 38.36 32.94

are fully taken into account, while the transition ΛΛ−ΞN is
omitted and its contribution is incorporated effectively by re-
adjusting the strength of theVΞN potential appropriately. The
latter approach facilitates a proper convergence of the energy
calculations to the lowest lying Ξ states. Furthermore, to
speed up the convergence, the ΞN potential is SRG-evolved
to a wide range of flow parameters. The effect of SRG evo-
lution on the Ξ separation energies is in general small, but,
it is slightly larger than that observed for ΛΛ hypernuclei.
We found three loosely bound states (1+, 0), (0+, 1) and
(1+, 1) for the NNNΞ system and more tightly bound 5

Ξ H,
7
Ξ H hypernuclei. These Ξ systems are bound predominantly
due to the attraction of the chiral ΞN potential in the 33S1
channel. On the other hand, the repulsive nature in 31S0 pre-
vents the binding of the NNNΞ(0+, 0) state. All the investi-
gated Ξ bound states are predicted to have very small decay
widths.

In view of these results, which are based on an interaction
that is fully consistent with presently available experimental
constraints, and well in line with current lattice QCD results
[22], it seems likely that light Ξ hypernuclei exist. Experi-
mental confirmation is certainly challenging. However, the-

oretical estimates for yields of A = 4 hypernuclei [54] as
well as actual measurements of 4

ΛH, 4
ΛHe by the STAR Col-

laboration [55] raise hopes that NNNΞ bound states can be
detected in heavy ion collisions in the not too far future.
Also a bound 7

Ξ H system could be produced and studied
in the 7Li(K−, K+) reaction [25], cf. the proposal P75 for
J-PARC [52]. Once these new experimental results are avail-
able, they will provide new insights into the properties of
S = −2 BB interactions. The current manuscript sets up a
framework that allows one to exploit these insights to con-
strain BB interactions in the future.
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Conclusions & Outlook
• YN & YY  interactions not well understood   

• scarce YN data, almost no YY data   

• more information necessary to solve "hyperon puzzle" 

• Hypernuclei provide important constraints    

• CSB of ￼  scattering &  ￼    

• ￼  is used to constrain the spin dependence 

• Light ￼  hypernuclei provide important information on ￼  forces 

• new experiments planned at J-PARC, MAMI, J-Lab, FAIR,…  

• New SMS YN interactions 
• give an accurate description low energy YN data 

• order LO, NLO and N2LO allow uncertainty quantification  

• have a non-unique determination of contact interactions (data necessary)  

• Chiral 3BF need to be included  

• NLO uncertainty is sizable in ￼  and beyond 

• chiral 3BFs are formulated (Petschauer et al., (2016))  
   and the  implementation is currently checked

ΛN 4
ΛHe / 4

ΛH
3
ΛH

S = − 2 ΛΛ−ΣΣ−ΞN

A = 4

￼21


