

Heavy Hadron Production in pp Collisions

J. Aichelin

J. Zhao, P.B. Gossiaux, K. Werner (Subatech, Nantes)

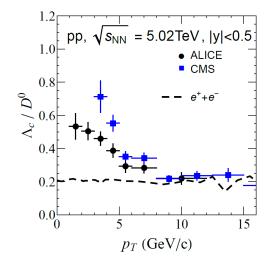
T. Song, E. Bratkovskaya (GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt)

> Physics opportunities with p-beams at SIS 100 Wuppertal, Febr. 6-9, 2024

Why should we study heavy hadrons in pp collisions?

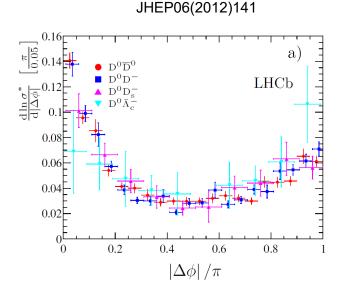
Experimental surprises:

 Λ_c / D⁰ ratio



elliptic flow v_2

azimuthal $\Delta \phi(p_D, p_{Dbar})$



are fragmentation functions not universal?

pQCD: $v_2 = 0$ Where does the finite v_2 come from?

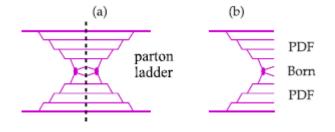
 p_T (GeV/c)

What causes this structured correlation function?

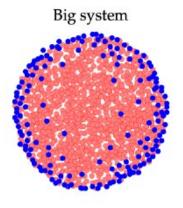
EPOS4

EPOS4: general purpose event generator for heavy ion collisions at RHIC and LHC

All scattering are rigorously treated in parallel Overall energy conservation and factorisation binary scaling Saturation

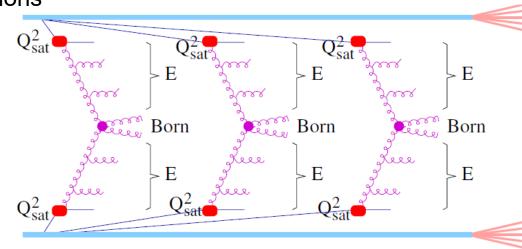


Core (QGP) and corona contributions



Small system

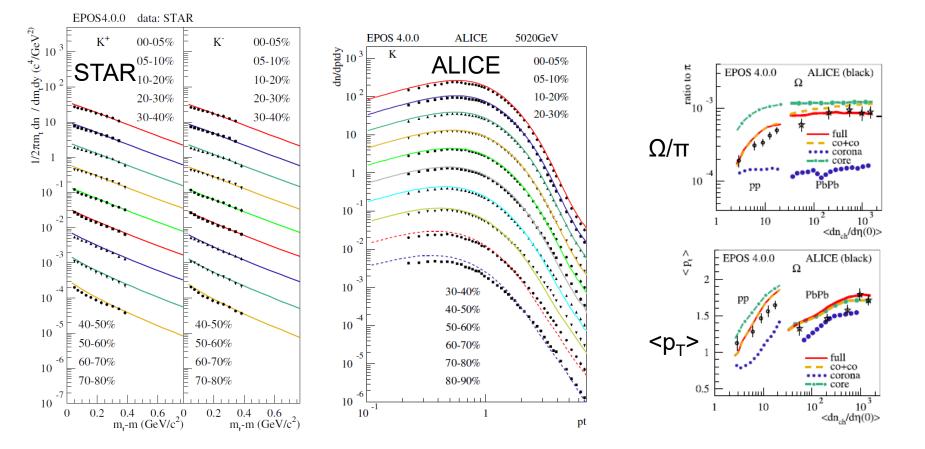
corona = blue core = red



PRC 108 (2023), 064903 PRC 108 (2023), 034904, 2310.09380 [hep-ph]

EPOS4 results in light hadron sector

EPOS4 describes the light meson sector



Even rare baryons

EPOS4HQ – extension for heavy quark physics

EPOS 4 EPOS4HQ heavy quarks are created at the interaction points a QGP is created if energy density > 0.57 GeV/fm²

No further interaction

heavy quarks interact with the QGP elastic and inelastic collisions

 e^+e^- fragmentation function \rightarrow hadrons

hadronization by fragmentation and coalescence (for Q/Qbar in the QGP) when the light quarks hadronize

hadronic interactions described by UrQMD

Microcanonical description of heavy quarks. We can follow each Q individually from creation through hadronization until they are part of heavy hadrons all fluctuations are kept

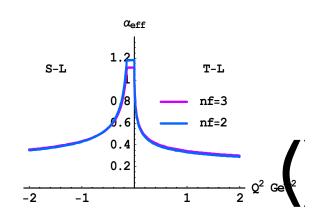
allows to trace back the D meson observables to the properties of Q at production

EPOS4HQ – elastic HQ-parton scattering

The interaction between HQ and q and g is described by Born type diagrams

$$\frac{d\sigma_F}{dt} = \frac{\mathbf{g^4}}{\pi (s - M^2)^2} \Big[\frac{(s - M^2)^2}{(t - \kappa \mathbf{m}_D^2)^2} + \frac{s}{t - \kappa \mathbf{m}_D^2} + \frac{1}{2} \Big] \quad \bigoplus_{\Theta \Theta \Theta}^{\Theta \Theta} \Big]^{\mathbf{V}(\mathbf{r})} \sim \frac{\exp(-m_b \mathbf{r})}{r}$$

q/g is randomly chosen from a Fermi/Bose distribution with the local hydro temperature coupling constant and infrared screening are input



Peshier NPA 888, 7 based on universality constraint of Dokshitzer If t is small ($\sqrt{t} <<$ T) : Born has to be replaced by a hard thermal loop (HTL) approach For \sqrt{t} >T Born approximation is (almost) ok

(Braaten and Thoma PRD44,2625) for QED: effective propagator

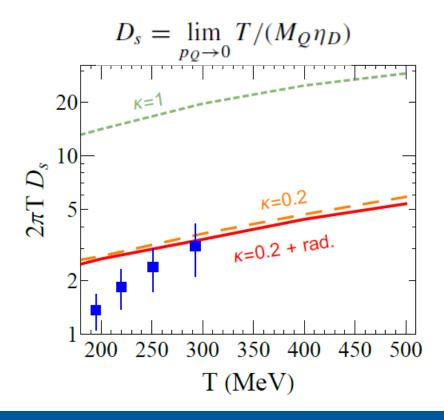
$$\frac{1}{t - \kappa m_D}$$

with κ that energy loss indep. of the artificial scale t* which separates the regimes Extension to QCD (PRC78:014904)

Independence of the energy loss on the intermediate scale t* requires

 $m_D^{} \rightarrow \kappa \; m_D^{}$ with

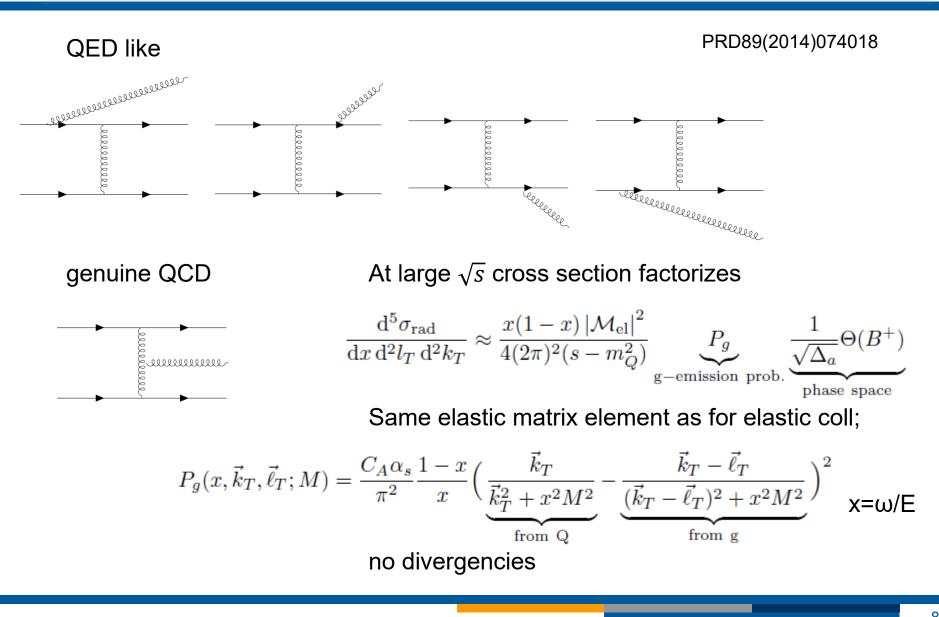
In the calculations we include all the other channels and gluon interactions



Approach can be checked against lattice calculations

Better agreement as compared to pQCD with a effective thermal mass in gluon propagator

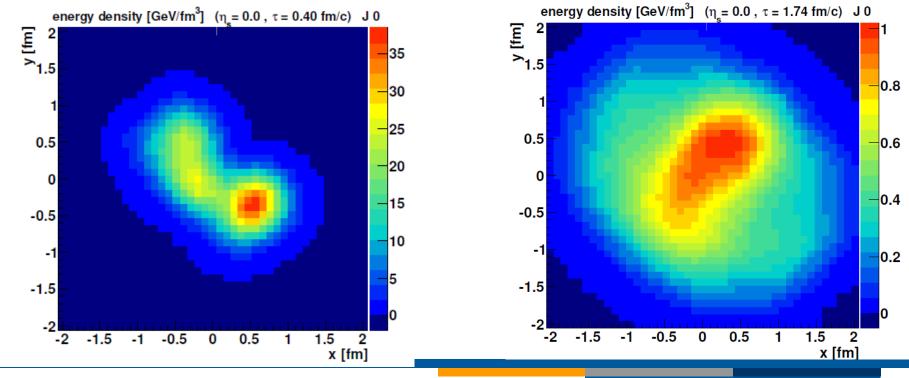
EPOS4HQ - inelastic cross section



pp in EPOS4HQ

EPOS4HQ applied to pp: QGP is created if energy density > 0.57 GeV/fm²

Energy density in the transverse plane of a typical pp event (each event looks differently



EPOS4HQ Hadronization

Quantal density matrix approach $P_m = Tr (\rho_m \rho)$ in Wigner density formalism

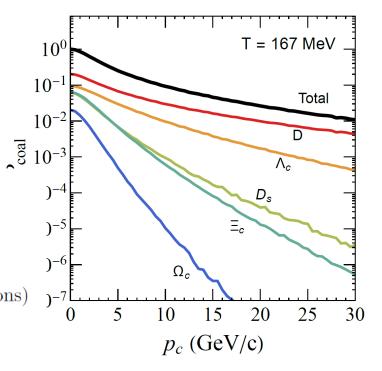
Wigner density obtained by Solution of Schrödinger eq. \rightarrow rms radius \rightarrow 3d harm. Osc. wf with same rms

$$\frac{dN}{d^{3}\mathbf{P}} = g_{H} \sum_{N_{c}} \int \prod_{i=1}^{k} \frac{d^{3}\mathbf{p}_{i}}{(2\pi)^{3}} f_{i}(\mathbf{p}_{i}) W_{m}(\mathbf{p}_{1},..,\mathbf{p}_{i})$$
$$\times \delta^{(3)} \left(\mathbf{P} - \sum_{i=1}^{k} \mathbf{p}_{i}\right),$$

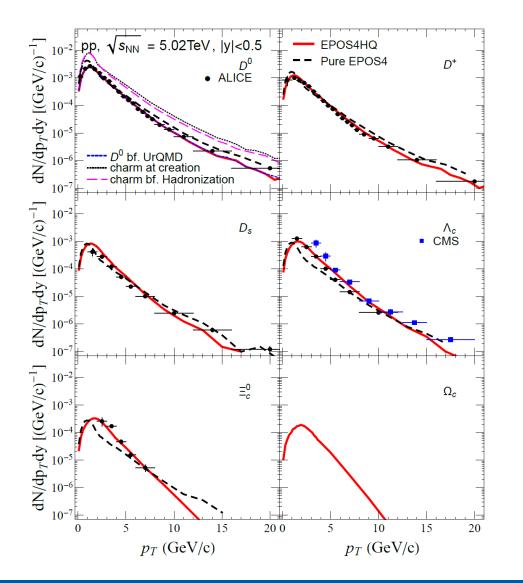
 $f_1(\mathbf{p}_1) = (2\pi)^3 \delta^{(3)} (\mathbf{p}_c - \mathbf{p}_1)$ $f_i(\mathbf{p}_i) \text{ for } i > 1 \text{ drawn from thermal distribution}$ $W_m(\mathbf{p}_1, ..., \mathbf{p}_i) = (2\sqrt{\pi}\sigma_m)^3 e^{-\sigma_m^2 p_r^2}$ Wigner density of the heavy hadron *m* in momentum space $g_H \text{ degeneracy factor of color and spin. } k = 2(3) \text{ for mesons (baryons)}$

Applied when the QGP reaches $\epsilon = 0.57 \text{ GeV/fm}^3$

If not hadronized by coalescence \rightarrow hadronization by fragmentation



p_T spectra for pp



Spectra at creation and before hadronization very similar

 \rightarrow Little momentum loss in the QGP

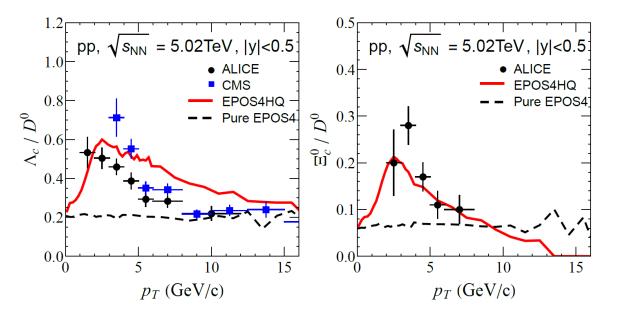
Momentum loss due to hadronization much larger

Final spectrum agrees with QCD based FONLL calculations

All measured spectra of mesons and baryons reproduced

But: Momentum spectrum not sensitive to the existence of a QGP

Yield ratios



With increasing N_{ch} more Q pass a QGP Saturates at $N_{ch} \approx 40$

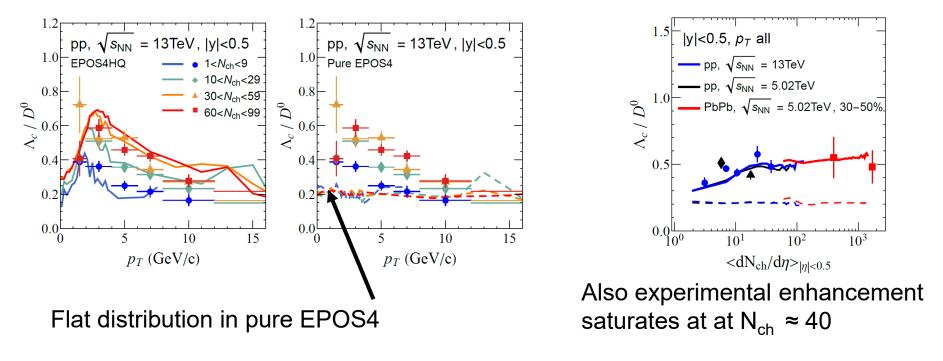
 e^+e^- : ratio is constant in p_T = pure EPOS4

Interaction with QGP enhances ratio at low p_T hadronization produces more baryons



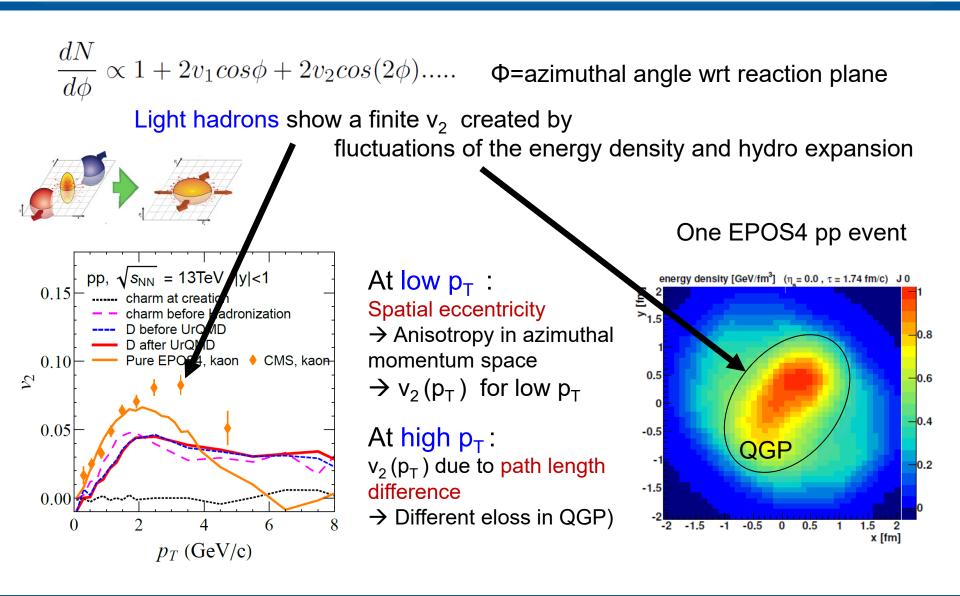
Yield ratios

N_{ch} dependence of the enhancement is confirmed by experiment



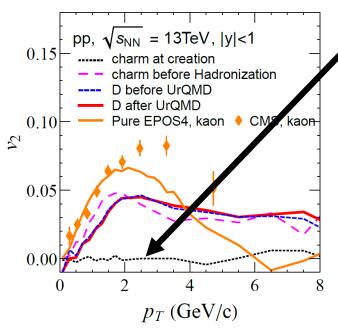
Yield ratios are a strong indication that a QGP is formed

Elliptic flow v_2



Elliptic flow v₂

For heavy mesons: Form of $v_2(p_T)$ similar but value is smaller

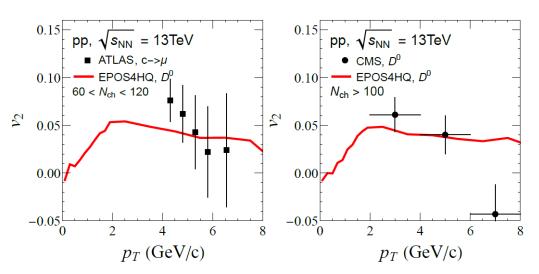


 $v_2 (p_T > 5 \text{ GeV})$ is up to now the only way the measure the energy loss of heavy quarks in a QGP Produced in a pp collision

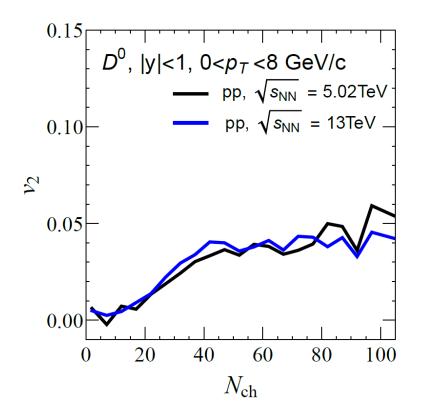
initially heavy quarks are

- produced in hard processes $M >> \Lambda_{QCD}$
 - \rightarrow no finite elliptic flow expected

In EPOS4HQ the interaction with the QGP creates this flow even in pp.



Elliptic flow v₂



 v_2 depends on N_{ch}

saturates when all heavy quarks pass a QGP (N_{ch} ≈ 40)

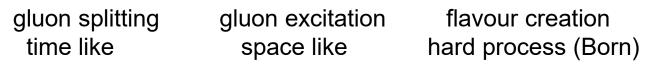
Is not beam energy dependent But less than v_2 of light hadrons

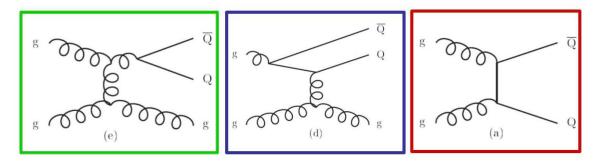
The finite v_2 of heavy hadrons (initially =0!!) as well as its p_T dependence is another strong indication that a QGP is formed in pp collisions

Correlations between Q and Qbar are important

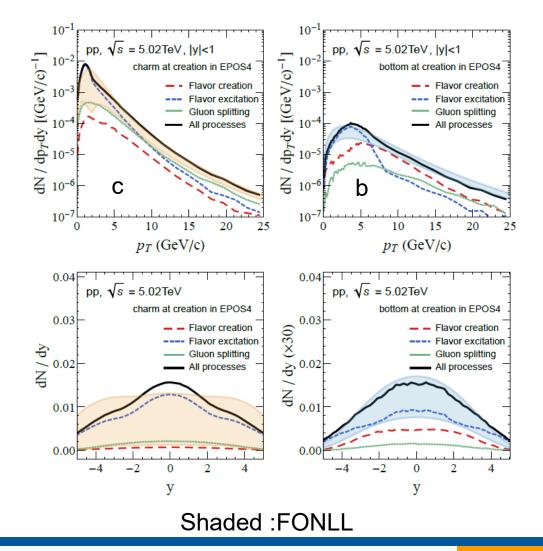
if one wants to study/understand D Dbar correlation if one wants to study hidden heavy flavour mesons like J/ ψ if one wants to understand the p_T distributions of heavy hadrons

FONLL only single particle p_T spectrum Pythia ISR and FSR can be added EPOS4HQ separates the three different production mechanisms





\boldsymbol{p}_{T} and y distribution depend on creation mechanism



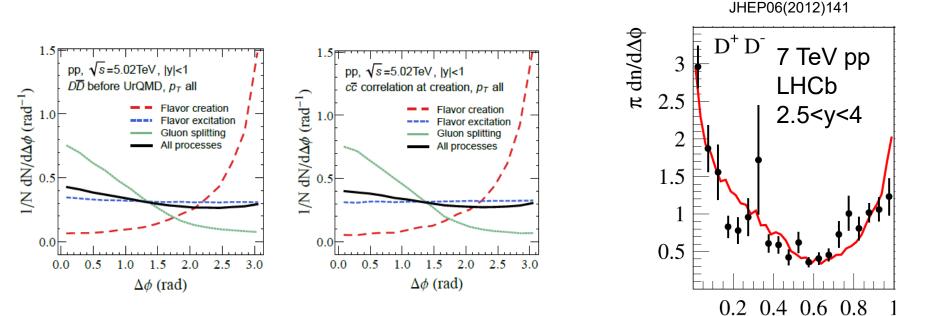
For b and c quarks the contributions are different

High p_T c \rightarrow gluon splitting

High p_T b \rightarrow flavor creation (more energy avail.)

low p_T flavor excitation

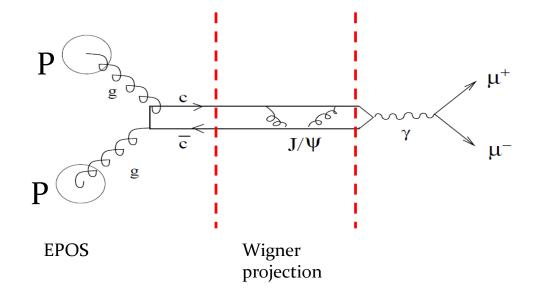
Spectra (sum of all contributions) agree with FONLL



The different production mechanisms of QQbar pairs well seen in the azimuthal correlations and explain the structured experimental data $\Delta \phi / \pi$ agree with experiment

Correlation between c and cbar show also up in quarkonium production

How to describe a **bound** state like a c-cbar in QCD? It involves low momenta and needs **non perturbative** input → assumptions. Our approach: Wigner density formalism (as successful at lower energies)

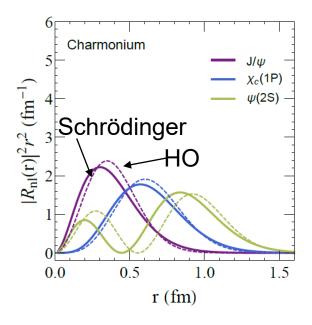


$$\left[-\frac{1}{2\mu}\left(\frac{d^2}{dr^2} + \frac{2}{2}\frac{d}{dr}\right) + \frac{l(l+1)}{2\mu r^2} + V(r)\right]R_{nl}(r) = ER_{nl}(r)$$

 $V(r) = -\alpha/|\mathbf{r}| + \sigma|\mathbf{r}| \text{ with } \alpha = 0.513 , \sigma = 0.17 \text{GeV}^2, m_c = 1.5 \text{GeV}, m_b = 5.2 \text{GeV}.$ $\mathbf{r} = \mathbf{r}_i - \mathbf{r}_j$ $\psi(\mathbf{r}) = R_{nl}(r) Y_{l,m}(\theta, \phi).$

Wave fct converted into a 3d harmonic oscillator wave fct with same spin and same rms radius

Wave fct → density matrix → Wigner density W_{nl}(r,p)

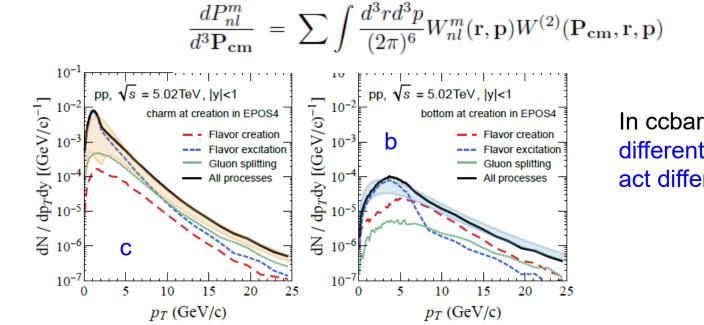


Initial Wigner density of the Q Qbar pair at creation:

$$W^{(2)}(\mathbf{P}, \mathbf{r}, \mathbf{p}) \sim r^2 \exp\left(-\frac{r^2}{2\sigma_{Q\bar{Q}}^2}\right) f_{Q\bar{Q}}^{EPOS4}(\mathbf{P}, \mathbf{p})$$
 P,p given by EPOS4

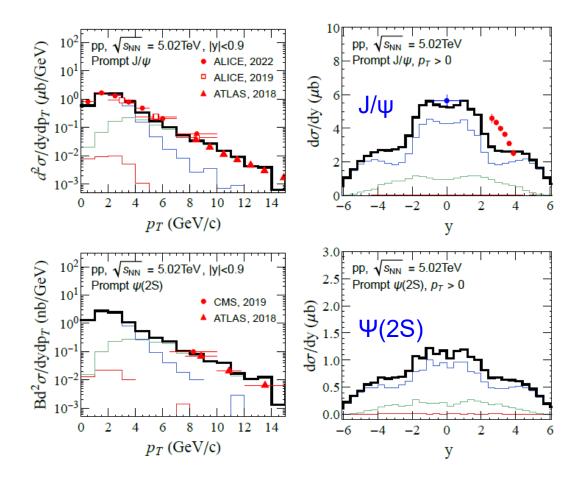
 $\sigma_{c\bar{c}}=0.4 {\rm fm}$; $\sigma_{b\bar{b}}=0.2 {\rm fm}$

Probability that quarkonium m with quantum number n,l is produced



In ccbar and bbar different creation processes act differently

Prompt J/ ψ spectrum and contribution of the different Q Qbar creation processes



high p_T : dominated by gluon splitting

flavor creation does not play a role

low p_T : Dominated by flavor excitation

Without understanding the correlations one cannot understand J/ψ production

Conclusion

Q Qbar physics added to EPOS4 (ε>ε₀ = 0.57 GeV/fm³ →QGP) if applied to pp and assuming that
 Qqbar interact with QGP with elastic and inelastic collisions
 Q and Qbar in the QGP can hadronize by coalescence (density matrix)

 v_2 well reproduced (interaction of Q with the QGP) meson/baryon ratio well reproduced (hadronization of c cbar by coalescence) p_T spectra and c cbar correlations little affected by QCP

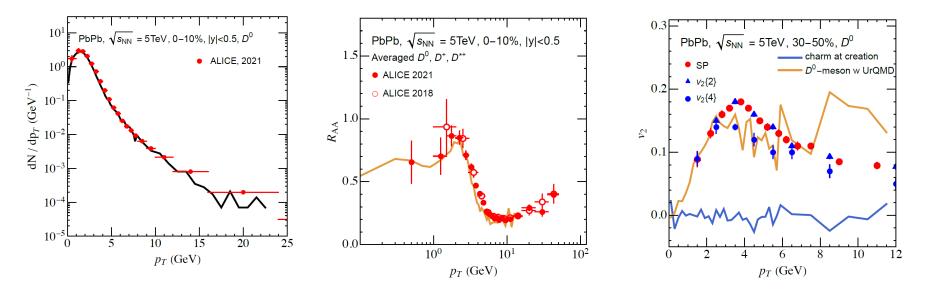
It seems that pp collisions are by far not elementary but complex many body reactions

Three production mechanisms identified (which explain the exp data) create different correlations between Q and Qbar
→ p_T spectra of heavy mesons is superposition of the three J/ψ production (described by density matrix approach)
→ p_T spectra not understandable without these correlations

pp: perspective to study different aspects of QGP/QCD in detail

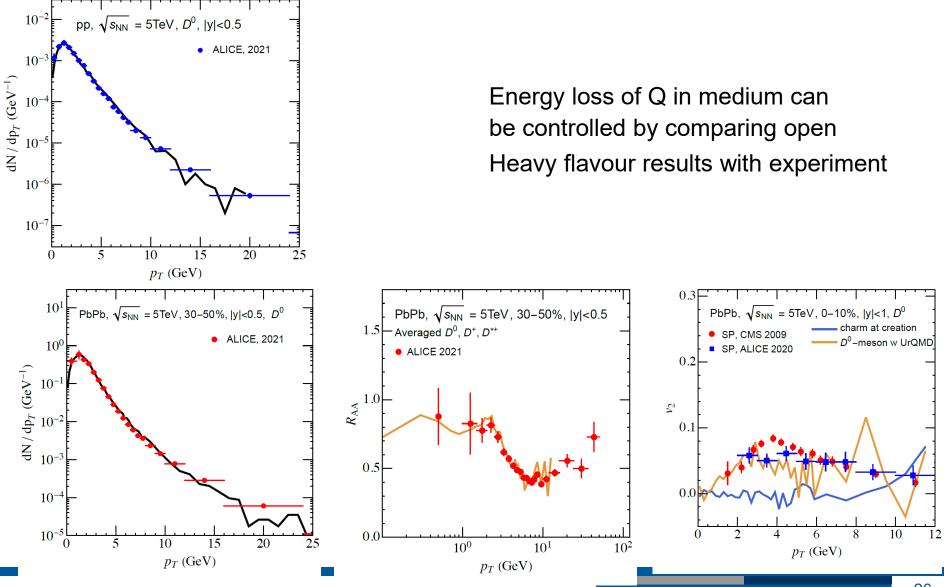
HQ interactions with QGP verified by D meson results

D mesons test the energy loss and v_2 of heavy quarks in a QGP energy loss tests the initial phase v_2 the late stage of the expansion Two mechanisms : collisional energy loss: PRC78 (2008) 014904 radiative energy loss: PRD89 (2014) 074018



EPOS4HQ reproduces dN/dp_T , R_{AA} and v_2 quite well \rightarrow Heavy quark dynamics in QGP medium under control

Open heavy flavor results in pp and AA from EPOS4

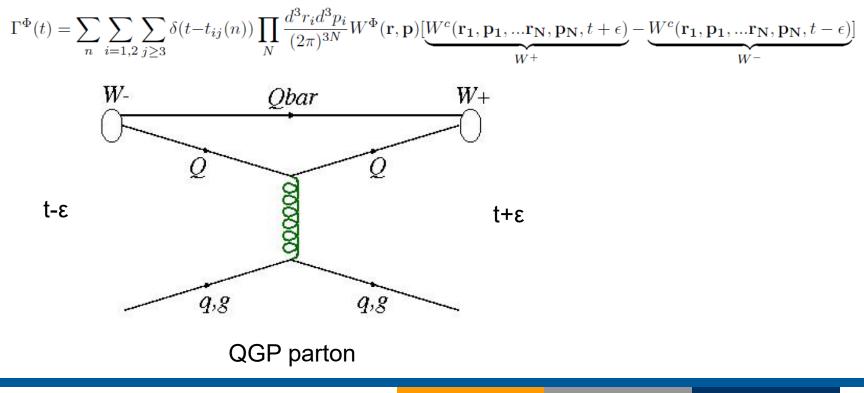


J/ψ creation in heavy ion collisions

 $\Gamma^{\Phi}(t)$ expressed in Wigner and classical phase space density:

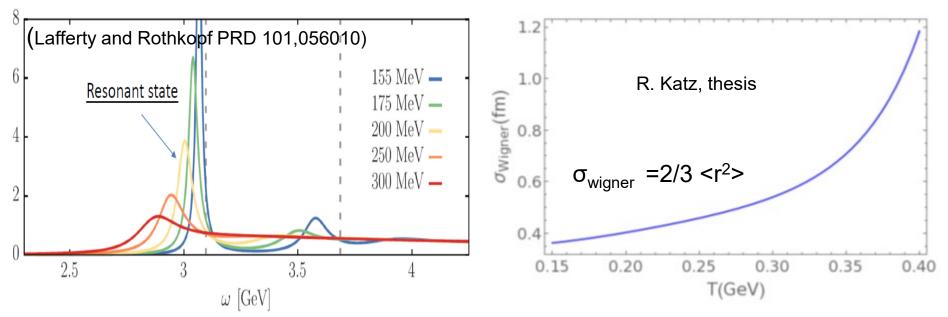
$$\Gamma^{\Phi}(t) = \frac{dP^{\Phi}(t)}{dt} = \frac{d}{dt} Tr[\rho^{\Phi}, \rho_N(t)] \approx \frac{d}{dt} \prod \frac{d^3 r_i d^3 p_i}{(2\pi)^{3N}} W^{\Phi}(\mathbf{r}, \mathbf{p}) W^c(\mathbf{r_1}, \mathbf{p_1}, \dots \mathbf{r_N}, \mathbf{p_N})$$

If the collisions are point like in time and if $W^{\Phi}(\mathbf{r}_1, \mathbf{r}_2, \mathbf{p}_1, \mathbf{p}_2)$ is time independent (1,2 are charm quark, n=number of collision of i and j, $t_{ij}(n)$ =time of n-th collision of ij) :



J/ψ creation in heavy ion collisions

Lattice calc: $W^{\Phi}(\mathbf{r}_1, \mathbf{r}_2, \mathbf{p}_1, \mathbf{p}_2)$ depends on the temperature and hence on time



This creates an additional rate, called local rate

$$\Gamma_{loc} = (2\pi\hbar)^3 \int d^3r d^3p \ W_{Q\bar{Q}}(\mathbf{r},\mathbf{p},t) \dot{W}_{\Phi}(\mathbf{r},\mathbf{p},T(t)).$$

Final multiplicity of J/I in heavy-ion coll with a dissociation temperature

$$P(t) = P^{prim}(t_{init}) + \int_{t_{init}}^{t} [\Gamma_{coll}(t') + \Gamma_{loc}(t')]dt' \rightarrow P(t \rightarrow \infty) = \text{asympt. multiplicity}$$

Influence of the Corona

EPOS 2 show two classes of particles of initially produced particles:

- Core particles which become part of QGP
- Corona particles from the surface of the interaction zone (energy density too low, no collision after production → like pp) importent for high pt and for v2

Confirmed by centrality dependence of multiplicity

For J/ ψ mesons we use as working description: Corona J/ ψ are those where none of its constituents suffers from a momentum change of q > q_{thres}. Larger q would destroy a J/ ψ .

Our approach and open quantum systems

Von Neuman eq.

$$\partial \rho_N / \partial t = -\frac{i}{\hbar} [H, \rho_N]$$
 $H = H_{1,2} + H_{N-2} + U_{1,2}$ $U_{1,2} = \Sigma_j V_{1,j} + \Sigma_j V_{2,j}$

Prob. to find quarkonium $P^{\Phi}(t) = \operatorname{Tr}[\rho^{\Phi}\rho_{N}(t)]$ with $[\rho^{\Phi}, H_{1,2}] = 0$ $[\rho^{\Phi}, H_{N-2}] = 0$ Quarkonium rate: $\frac{dP^{\Phi}(t)}{dt} = \Gamma^{\Phi}(t) = \frac{-i}{\hbar}Tr[\rho^{\Phi}[U_{1,2}, \rho_{N}(t)]]$

$$\partial \rho_N(t) / \partial t = -\frac{i}{\hbar} \Sigma_j [K_j, \rho_N(t)] - \frac{i}{\hbar} \Sigma_{k>j} [V_{jk}, \rho_N(t)].$$

Interaction: coll. heavy quarks - partons:

S:
$$-\frac{i}{\hbar} \Sigma_{k>j} [V_{jk}, \rho_N(t)] \equiv \langle \Sigma_{k>j} \Sigma_n \delta(t - t_{jk}(n)) \\ \cdot (W_N^c(\{\mathbf{r}\}, \{\mathbf{p}\}, t + \epsilon) - W_N^c(\{\mathbf{r}\}, \{\mathbf{p}\}, t - \epsilon)) \rangle.$$

yields

$$\frac{dP^{\Phi}(t)}{dt} = \Gamma^{\Phi}(t) = h^3 \frac{d}{dt} \int \prod_j^N d^3r_j d^3p_j W^{\Phi}_{12} W^c_N(t) = h^3 \int \prod_j^N d^3\mathbf{r}_j d^3\mathbf{p}_j \ W^{\Phi}_{12} \frac{\partial}{\partial t} W^c_N(t)$$

Lindblad eq. (open quantum systems) in the quantal Brownian motion regime

$$\frac{d}{dt}\rho(t) = -i\left[\frac{p^2}{M} + \Delta H, \rho\right] + \sum_n \int \frac{d^3k}{(2\pi)^3} \left[C_n(\vec{k})\rho C_n^{\dagger}(\vec{k}) - \frac{1}{2}\left\{C_n^{\dagger}(\vec{k})C_n(\vec{k}), \rho\right\}\right]$$

Miura, Akamatsu , 2205.15551

Wigner Density Formalism

c-cbar interaction depends on relative p and r only, \rightarrow plane wave of CM Starting point: Wave function (w.f.) of the relative motion of state i: $|\Phi_i\rangle$

w.f. \rightarrow density matrix $|\Phi_i > < \Phi_i|$

Wigner density of $|\Phi_i \rangle$: $\Phi_i^W(\mathbf{r}, \mathbf{p}) = \int d^3 y e^{i\mathbf{p}\cdot\mathbf{y}} < \mathbf{r} - \frac{1}{2}\mathbf{y}|\Phi_i\rangle < \Phi_i|\mathbf{r} + \frac{1}{2}\mathbf{y}\rangle$. (close to classical phase space density) $\mathbf{R} = \frac{\mathbf{r}_1 + \mathbf{r}_2}{2}, \quad \mathbf{r} = \mathbf{r}_1 - \mathbf{r}_2,$ $\mathbf{P} = \mathbf{p}_1 + \mathbf{p}_2, \quad \mathbf{p} = \frac{\mathbf{p}_1 - \mathbf{p}_2}{2}.$

$$n_i(\mathbf{R}, \mathbf{P}) = \sum_{\text{all } c\bar{c} \text{ pairs}} \int \frac{d^3 r d^3 p}{((2\pi)^3} \Phi_i^W(\mathbf{r}, \mathbf{p}) \prod_{\text{all other particles}} \int \frac{d^3 r_j d^3 p_j}{(2\pi)^{3(N-2)}} \rho_N^W(\mathbf{r}_1, \mathbf{p}_1 \dots \mathbf{r}_N, \mathbf{p}_N)$$

$$\frac{dn_i}{d^3P} = \int \frac{d^3R}{(2\pi)^3} n_i(\mathbf{R}, \mathbf{P})$$

The results are obtained using a relativ. formulation

pp: In momentum space given by tuned PYTHIA In coordinate space $\sim r^2 \exp\left(-\frac{r^2}{2\delta^2}\right)$ $\delta^2 = \langle r^2 \rangle/3 = 4/(3m_c^2)$