Subthreshold charm and strangeness production at GSI/FAIR energies

Marcus Bleicher (and Jan Steinheimer) Institut für Theoretische Physik Goethe Universität - Frankfurt

What is sub-threshold particle production?

And why is it interesting for us?

Production of hadrons below threshold

- In elementary reactions, e.g. pp, it is not possible to produce a particle with mass m_{new}, if m_P+m_P+m_{new}>E_{CM,pp} (energy conservation)
- However, in p+A and A+A reaction this is possible
- The question is, what mechanism allows for the production and are they realized

Mechanisms

- Generally three different mechanisms are available:
 - Fermi motion (more energy available than we thought)
 - 2) mass reduction/potentials (lowers the threshold for production)
 - 3) multi-step/multi-particle processes (collect energy to reach the threshold)

This talk...

Explores multi-strange particle production
 i.e. φ and Ξ production

 \rightarrow solves a long standing puzzle at GSI energies

 Explores charm production i.e. J/Ψ, Lc and D-mesons

 \rightarrow new road for a charm program at FAIR

Motivation: ϕ

G. Agakishiev et al. [HADES Collaboration], Phys. Rev. C 80, 025209 (2009)

ϕ production

HADES and FOPI reported unexpected large ϕ contribution to the K^- yield.

Motivation: Ξ

G. Agakishiev et al. [HADES Collaboration], Phys. Rev. C 80, 025209 (2009)

ϕ production

HADES and FOPI reported unexpected large ϕ contribution to the K^- yield.

Ξ production

 Ξ^- yield, measured in Ar+KCl much larger than thermal model.

Confirmed in p+Nb \rightarrow No Y+Y exchange!!

Both particles are not well described in microscopic transport models and thermal fits are also not convincing.

Threshold for p+p→p+p+¢ ≈ 2.895 GeV Threshold for p+p→N+Ξ+K+K ≈ 3.24 GeV

Probabilities

Sub-threshold production baseline

- Fermi momenta lift the collision energy above the threshold.
- Secondary interactions accumulate energy.

Why not introduce these decays for the less known resonances?

New resonances

N*(1650)	$\Delta(1232)$
N*(1710)	$\Delta(1600)$
N*(1720)	$\Delta(1620)$
N*(1875)	$\Delta(1700)$
N*(1900)	$\Delta(1900)$
N*(1990)	$\Delta(1905)$
N*(2080)	$\Delta(1910)$
N*(2190)	$\Delta(1920)$
N*(2220)	$\Delta(1930)$
N*(2250)	$\Delta(1950)$
N*(2600)	$\Delta(2440)$
N*(2700)	$\Delta(2750)$
N*(3100)	$\Delta(2950)$
N*(3500)	$\Delta(3300)$
N*(3800)	$\Delta(3500)$
N*(4200)	$\Delta(4200)$

Important: New resonances replace the strings, no additional pp cross section is introduced

Fixing the branching ratio

We use ANKE data on the ϕ production cross section to fix the $N^* \to N + \phi$ branching fraction.

Cross sections

Detailed balance \rightarrow absorption cross section

$$\frac{d\sigma_{b\to a}}{d\Omega} = \frac{\left\langle p_a^2 \right\rangle}{\left\langle p_b^2 \right\rangle} \frac{(2S_1 + 1)(2S_2 + 1)}{(2S_3 + 1)(2S_4 + 1)} \sum_{J=J_-}^{J_+} \frac{\left\langle j_1 m_1 j_2 m_2 \right| \left| JM \right\rangle^2}{\left\langle j_3 m_3 j_4 m_4 \right| \left| JM \right\rangle^2} \frac{d\sigma_{a\to b}}{d\Omega}$$

• $\phi + p$ cross section from detailed balance is very small.

φ transparency ratios I

Model 1: The eikonal approximation of the Valencia group.

Model 2: Paryev developed the spectral function approach for ϕ production in both the primary proton- nucleon and secondary pionnucleon channels.

Model 3: BUU transport calculation of the Rossendorf group. Accounts for baryonbaryon and meson-baryon φ production processes.

\rightarrow 20 mb absorption cross section for ϕ +N

Transparency ratios II

Detailed balance \rightarrow absorption cross section

$$\frac{d\sigma_{b\to a}}{d\Omega} = \frac{\left\langle p_a^2 \right\rangle}{\left\langle p_b^2 \right\rangle} \frac{(2S_1 + 1)(2S_2 + 1)}{(2S_3 + 1)(2S_4 + 1)} \sum_{J=J_-}^{J_+} \frac{\left\langle j_1 m_1 j_2 m_2 \right| \left| JM \right\rangle^2}{\left\langle j_3 m_3 j_4 m_4 \right| \left| JM \right\rangle^2} \frac{d\sigma_{a\to b}}{d\Omega}$$

- $\phi + p$ cross section from detailed balance is very small.
- Still the transparency ratio is well reproduced. Remember: this is what lead to the 20 mb cross section from ANKE.
- Cross section from transparency ratio is model dependent!

New explanation

- $\phi + p$ cross section from detailed balance is very small.
- Still the transparency ratio is well reproduced. Remember: this is what lead to the 20 mb cross section from ANKE.
- Cross section from trabsparency ratio is model dependent!
- Not 'absorption' of the ϕ , but of the mother resonance.
- Reactions of the type: $N^* + N \rightarrow N'^* + N'^*$ $N^* + N \rightarrow N'^* + N'^*$ where the mass of $N'^* < N^*$ so the second second

where the mass of $N'^* < N*$ so no ϕ can be produced.

Extrapolation to AA

When applied to nuclear collisions:

- Qualitative behavior nicely reproduced
- Predicted maximum at 1.25 A GeV
- High energies: too low due to string production
- HADES preliminary results for 1.23 A GeV, see HADES talks by R. Holzmann and T. Scheib.

Even centrality dependence is very well reproduced: Signal for multi step processes.

Centrality

Even centrality dependence works well:

- Centrality dependence nicely reproduced.
- Good indicator for multi step production.

Data from: K. Piasecki et al., arXiv:1602.04378 [nucl-ex].

Plain Kaon yields

Good description of the Kaon data

Now for the Ξ

No elementary measurements near threshold. We use p+Nb at $E_{\text{lab}} = 3.5 \text{ GeV}$ data $\rightarrow \Gamma_{N^* \rightarrow \Xi + K + K} / \Gamma_{tot} = 3.0\%$

HADES data	
$\langle \Xi^- angle$	Ξ^-/Λ
$(2.0 \pm 0.3 \pm 0.4) \times 10^{-4}$	$(1.2 \pm 0.3 \pm 0.4) \times 10^{-2}$
UrQMD	
$\langle \Xi^- angle$	Ξ^-/Λ
$(1.44 \pm 0.05) \times 10^{-4}$	$(0.71 \pm 0.03) \times 10^{-2}$

Table: Ξ^- production yield and Ξ^-/Λ ratio for minimum bias p + Nb collision at a beam energy of $E_{\text{lab}} = 3.5$ GeV, compared with recent HADES results

G. Agakishiev et al., Phys.Rev.Lett. 114 (2015) no.21, 212301.

Comparison to data for Ξ

- Ξ[−] yield in Ar+KCl collisions is nicely reproduced
- Consistent with the p+Nb data.
- Indication for Ξ production from non-thermal 'tails' of particle production.
- All other strange particle ratios are also in line with experiment

Can we also use this for charm?

Bold..., but possible...

J. Steinheimer, A. Botvina and M. Bleicher, arXiv:1605.03439 [nucl-th].

Marcus Bleicher, Wuppertal PP 2024

Fixing the branching ratio

We use data from p+p at $\sqrt{s} = 6.7$ GeV to fix the $N^* \rightarrow N + J/\Psi$ branching fraction.

$$\Gamma_{N^* \to NJ\Psi} / \Gamma_{tot} = 2.5 \cdot 10^{-3}$$

Assumptions

- We assume the associated production of $N^* \rightarrow \Lambda_c + \overline{D}$ to be a factor 15 larger at that beam energy and to contribute about the half of the total charm production.
- We neglect $D + \overline{D}$ pair production as it has a significantly higher threshold
- We neglect string production
- All the contributions should even increase the expected yield.

J/Ψ cross section

Detailed balance \rightarrow absorption cross section

- $J/\Psi + p$ cross section from detailed balance is very small.
- Not 'absorption' of the J/Ψ , but of the mother resonance.
- Reactions of the type: $N^* + N \rightarrow N'^* + N'^*$ $N^* + N \rightarrow N'^* + N'^*$ where the mass of $N'^* < N^*$ so no J/Ψ can be produced.

Comparable to: D. Kharzeev and H. Satz, Phys. Lett. B **334**, 155 (1994).

Predictions for SIS-100

When applied to central nuclear collisions (min. bias: divide by 5):

$$E_{\text{lab}} = 11 \text{ A GeV}$$

• $1.5 \cdot 10^{-6} J/\Psi$ per event
• $2 \cdot 10^{-5} \Lambda_c$ per event
• $\approx 3 - 4 \cdot 10^{-5} \overline{D}$ per event

Comparison to others I

Parametrized cross section for J/Ψ

$$\sigma_i^{NN}(s) = f_i a \left(1 - \frac{m_i}{\sqrt{s}}\right)^{\alpha} \left(\frac{\sqrt{s}}{m_i}\right)^{\beta} \theta(\sqrt{s} - \sqrt{s_{0i}})$$

O. Linnyk, E. L. Bratkovskaya and W. Cassing, Int. J. Mod. Phys. E 17, 1367 (2008)

Comparison to others II

Cross section for $p + p \rightarrow p + \overline{D}^0 + \Lambda_c$

Hadronic Lagrangian

Summary

- A new mechanism for the production of Ξ and φ is introduced and validated in elementary collisions
- This new branching ratio of high mass resonances is fitted to available data and extrapolated to AA
- It allows for the first time to describe the subthreshold multi-strange particle production
- If this mechanism is also be applicable to charm production it may open a new road for charm studies at FAIR-SIS 100