

MBS release V7.0 and recent developments Super-FRS EC Meeting 17-19 January 2024

M. Reese, J. Adamczewski-Musch, N. Kurz, S. Linev, S. Minami, I. Rusanov GSI/EEL 18.01.2024

Introduction

- Overview of MBS V7.0 release, highlight new features
 - New VME platforms: IFC and MVLC
 - White Rabbit timing receiver updates
 - New GSI mass storage interface FSQ
- Ongoing developments on PCIe platform
- About me:
 - PhD in Nuclear Spectroscopy (TU-Darmstadt / GSI)
 - 2016-2023 FAIR Control system: FAIR Timing Receiver (White Rabbit) Hardware and Software
 - Since September 2023: Member of GSI EEL, MBS knowledge transfer, MBS/DAQ support for experiments

MBS history and status

- MBS is the general purpose DAQ system from GSI for 30 years
- Recent releases: V4.3 (2004), V5.1 (2010), V6.3 (2017)
- Mostly used readout systems:
 - VMEbus + modules (GSI and other)
 - PCIe + optical fibre (gosip) + GSI front-end boards
- See overview talk from 2019 by Nik Kurz (daq.gsi.de)
- New release V7.0 ready in January 2023 Release notes
 - Installed at GSI MBS cluster at /mbs/v70
 - Default MBS version (mbslogin prod), V6.3 is still available (mbslogin old)

New platform: IFC PPC linux for VME

• CES/RIO4 processor discontinued in 2021 (in use with >80 modules)!

- IOxOS IFC:
 - Kernel modules and drivers software for "jethro" Linux
 - TRIVA trigger module
 - VETAR white rabbit timing receiver + etherbone libs
 - MBS pipe shared memory
 - Example readouts and tests for all known VME modules
 - (J. Adamczewski-Musch, N.Kurz)

New platform: mesytec MVLC

- MVLC hardware:
 - VME controller/sequencer with low (no) latency
 - Controlled via **USB 3** by any commodity MBS PC (X86L-*)
 - Reduced readout flexiblility compared to VME processor
- MVME software:
 - prepare initialization and readout sequences

MVME software


```
Module Init for module triva7 master (on X86L-114)
           Close
                  Load_ Save to file
                                  Revert Changes
                                                Help
 1 # TRIVA registers:
 2# - Status Register
                          02000000 (hex)
                          02000004
      Control Register
 4 # - FCATIME
                          02000008
5 # - CTIME
                          02000000
  # Triva module initialisation as MASTER
8 # Write Control Register (0x02000004)
9 write A32 D32 0x0004 0x00000004
                                          # MASTER - has to come first!
10 write A32 D32 0x0004 0x00001000
                                          # disable trigger bus
                                              access editor
11 write A32 D32 0x0004 0x00000010
                                          # HALT
12 write A32 D32 0x0004 0x00000040
                                          # CLEAR
13 write A32 D32 0x0008 $(65535 - 20)
                                          # Fast Clear
14 #write A32 D32 0x000C $(65535 - 1700)
                                           # Ctime
15 write A32 D32 0x000C $(65535 - 1300)
                                           # Cti-
17 ####### MVLC setup for TRIVA
18 # Optional signal aliases: map
                                                       → mVLC IRQs (1..15).
19 # If no alias is set the trigge.
                                              ...ctlv taken as the IRO number.
20 # Otherwise if one of the alias
                                      wer pairs is used all pairs will be active too.
21 # Mapping a trigger value to 0 makes the MVLC ignore the trigger.
23 writeabs A32 D16 0xFFFF7000 14 # TRIVA Trigger 14 (Start)
24 writeabs A32 D16 0xFFFF7002 14 # mapped to MVLC IRO 14
26 writeabs A32 D16 0xFFFF7004 15 # TRIVA Trigger 15 (Stop)
27 writeabs A32 D16 0xFFFF7006 15 # mapped to MVLC IRO 15
29 writeabs A32 D16 0xFFFF7008 1 # TRIVA Trigger
30 writeabs A32 D16 0xFFFF700A 8 # mapped to MVLC IRQ (data event)
32 writeabs A32 D16 0xFFFF700C 2 # TRIVA Trigger
33 writeabs A32 D16 0xFFFF700E 9 # mapped to MVLC IRO (scaler event)
35 writeabs A32 D16 0xFFFF7010 3 # Map trigger 3 (bit combination of 1&2) to the
36 writeabs A32 D16 0xFFFF7012 10 # data event too. This avoids the readout getting
                                  # stuck when both the data and scaler triggers are
                                  # active at the same time.
39 writeabs A32 D16 0xFFFF7014 4
40 writeabs A32 D16 0xFFFF7016 11
42 /*
```

Integration of MVLC to MBS

- Required developments:
 - Control of TRIVA with MBS commands (set trigmod, start acquisition,...)
 - Different readout code for different TRIVA trigger types (mvme + mesytec upgrades!)
 - MVLC USB data is received by new MBS readout process (regular MBS subevents to pipe buffer)
 - Readout of VETAR White Rabbit timing receiver (produce MBS time stamp format)
 - Adjust readout for all types of VME modules used at GSI (mvme editor)
- It is now possible to combine multiple branches with mvlc and non-mvlc readout!

Integration of MVLC to MBS

- All VME modules used at GSI proved to work
- Performance improvement of factor 3 compared with RIO4 readout for a typical FRS setup
- No other hardware changes required when replacing RIO4 with MVLC
- Was used in beam end of 2023

White Rabbit timing receivers

Use of campus wide timestamp distribution via White Rabbit network of the FAIR control system

- MBS accepted trigger is time stamped and integrated into event data (8 ns/1 ns resolution)
- Time stamp can be used for synchronization/time sorting of "free running" (aka streaming readout) branches
- Works with VME (also MVLC) and PCIe systems

New mass storage interface FSQ

- "File Storage Queue" (Thomas Stibor, GSI IT)
- FSQ server with access to /lustre and TSM
- DAQ writes data with lightweight FSQ protocol, no IBM libs required
- Files are copied to /lustre first, then archived to tape
- Developed and tested with HADES at beamtime FEB22
- Will be common GSI storage interface for experiments

MBS transport to FSQ server

MBS PCIe platform: GOSIP

- Gigabit Optical Serial Interface Protocol
 - Data transfer protocol from FEEs to a PC.
 - 2Gbps (PCle 4x 2.5 Gbps)
- Address mode
 - Read/write access to 32-bit registers
 - Address space 24bits per FEE
- Block mode (token passing)
 - Fast data transfer to PCIe interface
 - Double buffered block data transfer from all chained FEEs

Ongoing development: GOSIP

- Upgrade to GOSIP with 5 Gbps line rate (Kintex-7 FPGAs):
 - Clock TDCs (CLKTDC128, KILOM, MPPC_ROB)
 - 100 MSPS ADC (**FEBEX4**)
- Upgrade to GOSIP with 2.5 Gbps line rate (ECP3 FPGAs):
 - High Resolution TDC (**TAMEXs**)
 - 50 MSPS ADC (**FEBEX3**)
- Allow dynamic change of line rate for KINPEX PCIe card: 5 Gbps, 3.125 Gbps, 2.5 Gbps and 2 Gbps.

(S. Minami)

Ongoing development: PCIe

- KINPEX: PCle gen 1 → gen 2
 765 MB/s → 1700 MB/s
- 64-bit DMA addresses to relax MBS pipe layout constraints

New optical connection between TRIXOR and EXPLODER

- TRIXORFP_FIBER2 replaces ribbon cable with optical link
- No copper between MBS
 PC and FE-crate
 → no ground loops

(I. Rusanov, H. Heggen)

Summary

- MBS release V7.0 provides many developments since 2016
- PCIe X86L- hosts have been upgraded to Debian 11
- New VME platforms: IFC, MVLC
- White Rabbit trigger time latch unit supported (VETAR, PEXARIA)
- New GSI storage protocol FSQ integrated to MBS transport (for all MBS Linux platforms, even RIO4)
- Development is ongoing

Thank you!

