

Overview of the SPS Target Autopilot application

P. Zisopoulos, K. Li, E. Veyrunes CERN, Geneva, Switzerland

Introduction

- The SPS delivers high-intensity beams to the three primary targets in the \bullet North Area (NA) [1] by employing resonant extraction at nominal momentum of 400 GeV/c
- The delivered intensities, as well as the position of the beam with respect to each target, is critical for the success of the NA experiments; the working point of the beam can be affected e.g. from hysteresis effects or wrong hardware settings and can therefore degrade the quality of the spill
- To ensure continuous optimization of the spill structure and of the beam \bullet delivery, the SPS Target Autopilot application has been developed for regulating automatically beam position and intensity at the primary targets, as well as to optimize the shape of the spill structure

Target symmetry & Intensity sharing

- The extracted beam is sent through the TT20 transfer line to pass from two vertical splitters that distribute the intensity among the three primary targets **T2**, **T4** and **T6**
- Beam intensity is measured with single foil secondary emission monitors \bullet (BSI). while beam position is measured by using the signal from two split foils (BSM) and calculating the target symmetry S

Beam position

The SPS Target Autopilot application

Correction of symmetries & intensity

- The symmetry at the BSMs is monitored continuously and compared to reference values in LSA [2]; if the value falls below 90% but above 10%, a corrective action is triggered externally at **YASP** [3] steering application

- Communication between YASP and SPS Target Autopilot is achieved by subscribing to a virtual parameter in LSA
- If the intensity sharing deviates from the reference values, the application triggers direct corrections on LSA knobs for moving the beam vertically across the splitters

Working point adjustment

- The rotation of the separatrix as the beam approaches the third order ulletresonance, induces beam losses on the extraction equipment; by means of the **COSE** [4] method, this rotation could be minimised and, in combination with **local crystal shadowing** [5], these losses are well suppressed today.
- Abrupt changes of the horizontal tune (Q_H) can create spikes in the spill structure; the SPS Target Autopilot facilitates efficient on-line tune adjustments by suggesting Q_H corrections according to observations of the spill evolution

Future plans

Other optimization agents are running in parallel to the SPS Target Autopilot, \bullet

References

[1] Post-LS3 experimental options in ECN3, CERN-PBC Report-2023-003

such as an Adaptive Bayesian Optimiser to minimise 50 Hz and 100 Hz spill harmonics, or an on-demand splitter losses optimizer

- Some of these optimizations risk to interfere and compete with each other, potentially compromising their capabilities
- We plan to explore a centralising framework in order to efficiently \bullet orchestrate the multitude of controller and optimizers that may find their way to the SPS in the future

[2] D. Jacquet et al., "LSA: The high-level application software of the LHC and its performance during the first three years of operations.", Proceedings of ICALEPS2013, San Francisco, CA, USA

[3] J. Wenninger, "YASP: Yet Another Steering Program"

[4] V. Kain et al., "Resonant slow extraction with constant optics for improved separatrix control at the extraction septum", Physical Reviews Accelerator & Beams, 22, 101001 (2019)

[5] F. Velotti et al., "Septum Shadowing by means of a bent crystal to reduce slow extraction beam loss", ", Physical Reviews Accelerator & Beams, 22, 093502