

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.

Measuring Small AC Ripple on Strong DC Currents

Slow Extraction Workshop 2024-02-11 - 15

Frank Stulle, Laurent Dupuy, Hervé Bayle (Bergoz Instrumentation)

Motivation

D. Prokopovich et al., "Slow Extraction at MedAustron", I.FAST REX Kick-Off Meeting, Feb 2021

F. Stulle, L. Dupuy, H. Bayle, "Measuring Small AC Ripple on Strong DC Currents"

2

İFAST

Development Objective

- I.FAST Work Package 5, Task 5.3: "Improvement of resonant slow extraction spill quality"
- I.FAST proposal: measure magnet currents to $\frac{\Delta I}{I_{\rm DC,max}} < 10^{-6}$
- Later communication: measure magnet currents to $\frac{\Delta I}{I_{\rm DC,max}} \approx 10^{-7}$

Rewind to Monday 2024-02-12 16:30

Ryotaro Muto, "Spill structure with newly upgraded main magnet power supplies in J-PARC Main Ring"

4

Question by audience: "Does your DCCT really have 10⁻⁷ resolution?"

İFAST

- My answer: "Be careful!"
- Spectral amplitudes may be at such low levels.
- But to get resolution we need to apply the inverse Fourier Transform.
- Since spectrum has a certain bandwidth, what we get in time domain is a signal averaged over a certain time window.
- Trade-off: good amplitude resolution vs good time resolution!
- To my knowledge, there is no current measurement system available that achieves close to 10⁻⁷ resolution with >100 Hz bandwidth.

7

IFAST

Fast Forward to Wednesday 2024-02-14 14:00

Development Objective

- Measurement bandwidth 10 Hz to 40000 Hz
- Magnet currents up to $I_{\rm DC,max} = 10000 \, {\rm A}$
- Current modulations up to $I_{\rm AC,max} \approx 1\% I_{\rm DC}$

- Collaboration consists of several groups with very different accelerators and very different magnets.
- That means, any development must be adaptable to very different requirements.

Development Starting Point

- Required AC resolution relative to $I_{\rm DC,max}$: $\frac{\sigma_{\rm I,AC}}{I_{\rm DC,max}} \approx 10^{-7} (\Rightarrow 140 {\rm dB \ dynamic \ range})$
- Required AC resolution relative to $I_{\rm AC,max}$: $\frac{\sigma_{\rm I,AC}}{I_{\rm AC,max}} \approx 10^{-5} (\Rightarrow 100 {\rm dB \ dynamic \ range})$
- Required DC accuracy and resolution not properly specified, but certainly a lot less stringent than 10⁻⁷.
- \Rightarrow It seems advantageous to separate DC and AC measurements.

Development Starting Point

- We are current transformer specialists.
- Hence, we decided to base the development on a current transformer.

 AC resolution and bandwidth are almost achieved by ACCT: ACCT bandwidth 1 Hz – 1 MHz

ACCT resolution <5×10⁻⁵ relative to full scale current

 Assuming flat noise spectrum, low pass filtering to 40000 Hz should result in 1×10⁻⁵ resolution.

10

Challenge

- Presence of strong DC currents, i.e. strong magnetic fields
 ⇒ saturation of magnetic materials used in current transformers
- A few Amperes suffice to saturate high performance magnetic materials.
- Need to wrap the current transformer in a DC compensation coil.
- Required compensation accuracy: $\leq 1 \text{ A} \Rightarrow \frac{\Delta I_{\text{DC}}}{I_{\text{DC,max}}} \leq 10^{-4}$

Basic Principle

F. Stulle, L. Dupuy, H. Bayle, "Measuring Small AC Ripple on Strong DC Currents"

12

IFAST

Basic Principle

- Design choice: both output signals shall be properly in phase.
- That means, to reconstruct the full input current spectrum (DC 40000 Hz):

 $I_{\rm in}(f) = g_{\rm DC} U_{\rm DC}(f) + g_{\rm AC} U_{\rm AC}(f)$

F. Stulle, L. Dupuy, H. Bayle, "Measuring Small AC Ripple on Strong DC Currents"

İFAST

Prototype Specifications

- DC: 8 V for 6000 A, DC ~10 Hz
- AC: 10 V for 60 A, ~10 Hz ~40000 Hz
- Two windings, each 1500 turns
- 110 mm aperture
- 260 mm outer diameter
- 80 mm height

Prototype Tests at CERN

6000 A DC Test Stand

Precision Voltmeters

Prototype Electronics

Reference Fluxgate DCCT Electronics

DC Ramp Up and Down

Prototype Tests at BI

17

IFAST

Frequency Response

F. Stulle, L. Dupuy, H. Bayle, "Measuring Small AC Ripple on Strong DC Currents"

IFAST

DC + Small AC

Measurements Close-Up

F. Stulle, L. Dupuy, H. Bayle, "Measuring Small AC Ripple on Strong DC Currents"

Close-Up DC / Frequency Response

- Apparently, DC compensation was behaving slightly wrong during measurements at CERN.
- Some shortcomings were quickly found, others were well hidden.
- Nothing was fundamentally wrong.
- Re-designed electronics for improved signal accuracy and stability.
- New electronics is being assembled now and will be tested soon.

Close-Up AC

F. Stulle, L. Dupuy, H. Bayle, "Measuring Small AC Ripple on Strong DC Currents"

IFAST

Close-Up AC

• DC Feedback=Off , Input Current: no DC, $\ge 0 A_{AC}$

AC Noise: $\sigma_{I,AC} = 0.33 \text{ mA}_{rms}$, $\frac{\sigma_{I,AC}}{I_{AC,max}} < 5.6 \times 10^{-6}$

F. Stulle, L. Dupuy, H. Bayle, "Measuring Small AC Ripple on Strong DC Currents"

25

FAST

- High resolution, high dynamic range current measurement system in development for stabilization of magnet power supplies.
- Prototype measurements were rather satisfactory.
- Bandwidth surpasses specifications.
- Measured AC resolution is (almost) within specifications. And there seems to be potential for further improvements.
- However, DC compensation worked less well than expected.
- Some corrections and improvements have been implemented already.
- New electronics will be finished this week.

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.