Slow Extraction of Mixed He-2+ and C-6+ Beams for Online Range Verification

5th Slow Extraction Workshop 2024

Wiener Neustadt / MedAustron – 12.-14.02.2024

Elisabeth Renner, Matthias Kausel

elisabeth.renner@tuwien.ac.at

Nadia Gambino, Florian Kühteubl, Valentin Kirchweger, Fabien Plassard, Dale Prokopovich, Claus Schmitzer, Markus Wolf

Outline

- Motivation for mixed ${}^{4}\text{He}^{2+}$ and ${}^{12}\text{C}^{6+}$ beams
- Feasibility study for delivering mixed beams at MedAustron
- Considerations for slow extraction of the mixed beam
- Outlook & conclusion

Mixed Beams for Online Range Verification

• ⁴He²⁺ and ¹²C⁶⁺ exhibit very similar charge-to-mass ratio.

- Simultaneous acceleration & delivery to irradiation room could be possible.
- Extraction at (almost) same energy per nucleon

- Helium has around 3 times the range of carbon at the same energy per nucleon.
 - Possibility for online range verification, ion CT, ...
 - If extracting an intensity ratio of He:C=1:10, 4 He²⁺ accounts for only $\sim 1\%$ of the dose delivered to the patient [1].
 - Note: Helium Bragg peak needs to traverse patient, only possible for larger tumor depths.
 - Described & proposed in refs. [1-3].
 - First experimental results at GSI in 2023 See David Ondreka's talk!

Feasibility Study: Mixed Beams @ MedAustron?

Background: MedAustron delivers ¹²C⁶⁺ and p+ for clinical treatment, ⁴He²⁺ is currently being commissioned for non-clinical research.

Objective: Assess the feasibility of delivering a mixed beam for nonclinical research (IR1).

Scenarios for Mixed Beam Generation

A. Generation in a single ion source is currently not possible at MedAustron.

Would require novel source and depending on the source LINAC upgrades (LINAC can only accelerate $\frac{q}{m} \ge \frac{1}{2}$).

B. Investigate sequential injection into the synchrotron as (temporary) alternative production scheme:

"Double multi-turn injection"

- I. 1st injector cycle: Inject ⁴He²⁺ into synchrotron + maintain beam at flat bottom (~1s)
- II. 2nd injector cycle: Inject ¹²C⁶⁺ on top of ⁴He²⁺ :
 - Adapt injection bump to sustain small He core
- III. Capture, acceleration + extraction of ion mix

Status:

- Managed to operate injector in proposed way & inject He and C sequentially*.
- <u>So far</u>, no show-stoppers from the control system identified.
- Next steps: optimize injection bump, harmonize injection energy, capture, acceleration, ...

Slow Extraction of Mixed He-2+ & C-6+ Beams

Objective & Simulation Set-Up

Objective: Proof-of-principle simulations of the slow extraction of the mixed He²⁺/C⁶⁺ beam to identify challenges & propose mitigation:

- Results serve as input for mixed beam generation and detection studies.
- Preliminary aim: deliver constant and/or known intra-spill particle fluence ratio of the two species:

$$\left| \xi := rac{dN_{
m He}/dt}{dN_{
m C}/dt}
ight|_t pprox {
m const.}$$

- Preliminary target is ~ He:C = 1:10 $\rightarrow \xi(t) \approx 0.1$
- Is ion distinction possible in a dose delivery system?
 - Yes: Possibility to adapt ξ and/or scanning during the spill ?
 - No: Can we guarantee a constant species ratio?

Simulation performed using Xsuite [4]:

- Enables 6D-tracking of ions with non-nominal q/m, also for bunched beams.
- Results in this presentation obtained using custom version with fixed bugs concerning nonnominal q/m, as described in issue 446 [5].

Many thanks to all Xsuite developers :)

[4] https://github.com/xsuite/xsuite [5] https://github.com/xsuite/xsuite/issues/446

Transverse Distribution Prior to Extraction

The considered options for generating the mixed-beam result in different initial horizontal emittances.

Thus, for the current proof-of-principle simulations, we consider a range of horizontal emittance ratios!

Note: All simulations performed with 10k He-2+ and 10k C-6+ particles -> Results will be subsequentially normalized to assumed initial intensity ratio of 1:10

Longitudinal Distribution Prior to Extraction I

⁴He²⁺ has higher rigidity than ¹²C⁶⁺ (reference particle) due to the smaller q/m.

 $\chi = rac{q_{
m He}}{m_{
m He}} / rac{q_{
m C}}{m_{
m C}} = 0.99935$

[7] P. Hermes (2016), PhD Thesis, CERN-THESIS-2016-230, https://cds.cern.ch/record/2241364/

Longitudinal Distribution Prior to Extraction II

Due to the rigidity offset, ⁴He²⁺ is accelerated to a slightly higher momentum/mass than ¹²C⁶⁺.

- Synchronous ⁴He²⁺ and ¹²C⁶⁺ with same revolution frequency
- Rigidity + path length difference yields relative **velocity offset** (see e.g. [6])

 $\frac{\beta_{\rm He} - \beta_{\rm C}}{\beta_{\rm C}} = \frac{1}{\boldsymbol{\gamma}_{\rm tr}^2 - \boldsymbol{\gamma}_{\rm C}^2} \cdot \left(\frac{1}{\boldsymbol{\chi}} - 1\right)$

and hence relative momentum per mass offset

$$egin{aligned} &
ightarrow \hat{\delta} = rac{\left(eta \gamma
ight)_{ ext{He}} - \left(eta \gamma
ight)_{ ext{C}}}{\left(eta \gamma
ight)_{ ext{C}}} > 0, \end{aligned}$$

which depend on the difference between extr. and transition energy

• Crucial for small medical machines, e.g. @ MedAustron $\gamma_{TR} \approx 2$, $\gamma_C \approx 1.1 - 1.4$

[6] P. Bryant (1993), The Principles of Circular Accelerators and Storage Rings, Chapter 7.7.6

Tune Distribution Prior to Extraction I

[7] P. Hermes (2016), PhD Thesis, CERN-THESIS-2016-230, https://cds.cern.ch/record/2241364/

Tune Distribution Prior to Extraction II

Consequently, the tune separation between ${}^{4}\text{He}{}^{2+}$ and ${}^{12}\text{C}{}^{6+}$ **depends on the extraction energy** $(Q' \neq 0)$.

TU Med Austron 14/02/2024

Proposed Extraction Strategy

Summary/Requirements: Aim to simultaneously extract (with similar particle fluence) two ion species, which can feature

- energy-dependent tune separation $(Q' \neq 0)$
- and potentially different horizontal phase space distributions.

Baseline: Extraction based on amplitude selection (RFKO)

- Multiple knobs for controlling intra-spill ion fluence ratio ξ depending on emittance ratios, extraction energy, ...
 - E.g., Q, Q'_x (tune separation), sextupole strength (ratio of stable areas), RFKO excitation signals / combinations,

Next slides: first, illustrative examples ...

- For now, coasting beams preliminarily based on machine settings within the parameter range described in [8] → to be adapted
- Today: RFKO excitation (no variation of Q', k2L, ...)

Parameter	• Unit	Value	
Q_x,Q_y	-	1.672, 1.79	
$Q'_x \; Q_{y'}$	-	-1.3, -2.6	
$lpha_{ m C}$	-	0.257	
σ_{δ}	-	0.35e-3	See talk by F. Kühteubl
$\epsilon_{\mathrm{n, \ rms}, x/y}$	mm mrad	$0.5 \ / \ 0.5$	

[8] F. Kuehteubl, IPAC23, doi:10.18429/JACoW-IPAC2023-TUPM091

Test Case 1: He & C with Similar Horizontal Emittances

• Emittance ratio: $\epsilon_{X,He} \approx \epsilon_{X,C}$

- Extraction energy: 400 MeV/u
- Intensity ratio in the synchrotron: He:C=1:10
- **Excitation**: single, constant BPSK signal with $BW_{N2N} = 10 \text{kHz}$

Note: Example to show dependency, non-optimized excitation for C-extraction

B. Extract with $\xi(t) = \dot{N}_{He}$: \dot{N}_{C} depending on applied signal.

C. Flexibility to abort extraction once majority of C is extracted.

Here arb. threshold = 90% of C extracted.

Test Case 1: Sensitivity to PSK Side Lobes

Re. B) First tests to assess **impact of applied RFKO signal on** \dot{N}_{He} : $\dot{N}_{C}(t)$ by changing BW of BPSK signal

Test Case 2: "Pre-Heating" of Helium Core

• Emittance ratio: $\epsilon_{X,He} \approx 0.05 \epsilon_{X,C}$

- Extraction energy: 400 MeV/u
- Intensity ratio in the synchrotron: He:C=1:10
- **Excitation**: single, constant BPSK signal with $BW_{N2N} = 10 kHz$

For $\varepsilon_{X,He} \ll \varepsilon_{X,C}$, selectively increase $^4\text{He}{}^{2+}$ emittance prior to extraction:

- Apply RFKO excitation only (mainly) in frequency range of ⁴He²⁺.
- Here: first example using frequency modulation
- Demonstrates beneficial effect, to be optimized!

▲ Ramp sextupole + start extraction 1.0 C-6+ He-2 He-2+ 0.8 heating 0.6^{,0} Α 0.4 В 0.2 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0.0 4.5 1e5 Turns

Conclusion & Next Steps

Take aways:

- Study the feasibility of delivering a mixed beam for nonclinical research (TU Wien, MedAustron, HEPHY).
- Proof-of-principle simulations using Xsuite for slow extraction of ion mix currently being performed.
- ✓ Due to the beam rigidity offsets between He-2+ and C-6+, **RFKO selected as baseline extraction mechanism.**
- Evaluating robustness of extraction to differences in momentum/mass between He-2+ and C-6+ (depending on extr. & transition energy) & impact of different horizontal emittance ratios.
- ? Desired input: what is the acceptable range for the intra-spill ion fluence ratio?

Only the beginning of the journey - next steps:

- Study different scenarios to further develop extraction set-up, ...
 - RFKO signal composition,
 - machine settings (chromaticity, tune, momentum spread),
 - momentum acceptance of extraction line,
 - ripples, bunched beams, ...

Thank you for your attention!

