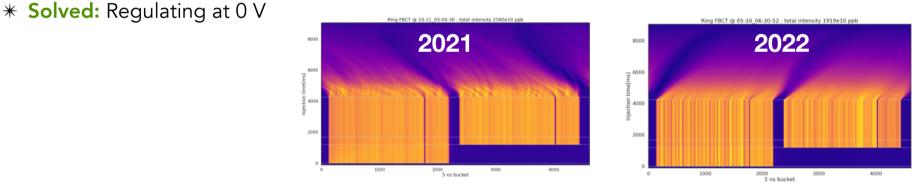


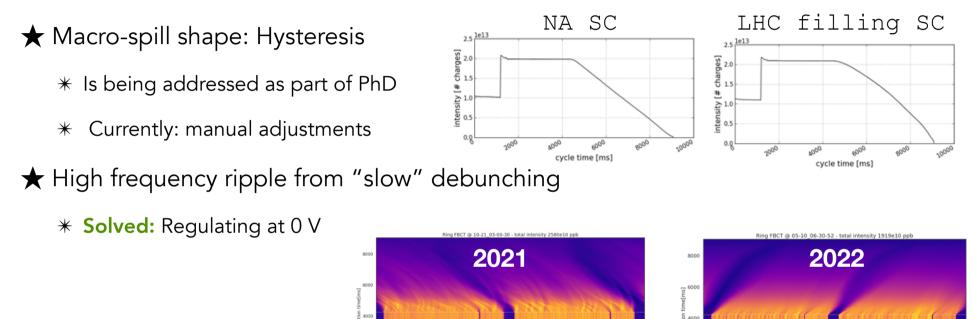
A detailed ML example: SPS spill quality control


V. Kain, P. Arrutia, F. Follin, A. Lu, G. Papotti, M. Schenk, F. Velotti

Motivation

Spill quality degrades with the slightest perturbation

★ Macro-spill shape: Hysteresis
* Is being addressed as part of PhD
* Currently: manual adjustments
★ High frequency ripple from "slow" debunching


 \bigstar Low frequency ripple from power converters

- * Implemented solution: $n \times 50$ Hz active control + Empty Bucket Channeling with 800 MHz
- * Goal: keep modulation amplitudes below 0.15 normalised for > 85 % of time

Motivation

Spill quality degrades with the slightest perturbation

★ Low frequency ripple from power converters

- * Implemented solution: $n \times 50$ Hz active control + Empty Bucket Channeling with 800 MHz
- * Goal: keep modulation amplitudes below 0.15 normalised for > 85 % of time

Since Long Shutdown 2, 50 and i.e. 100 Hz noise problematic.

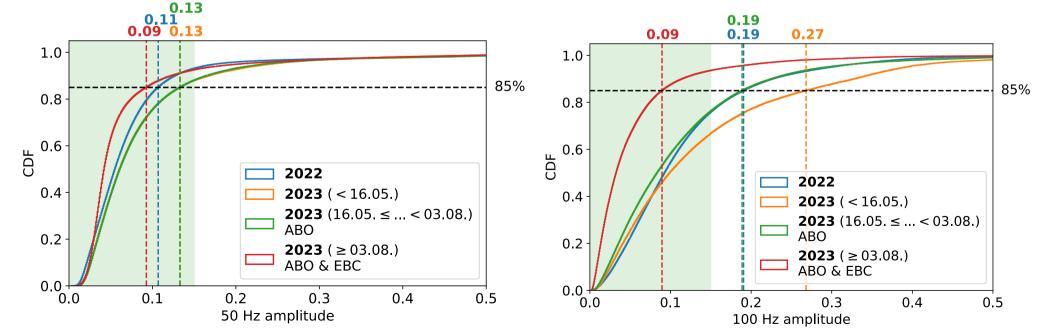
Also, larger shot-by-shot fluctuations during day.

Since Long Shutdown 2, 50 and i.e. 100 Hz noise problematic.

- Also, larger shot-by-shot fluctuations during day.
- \rightarrow auto-launch numerical optimisation $\,$ in 2022 \rightarrow 50~Hz~OK

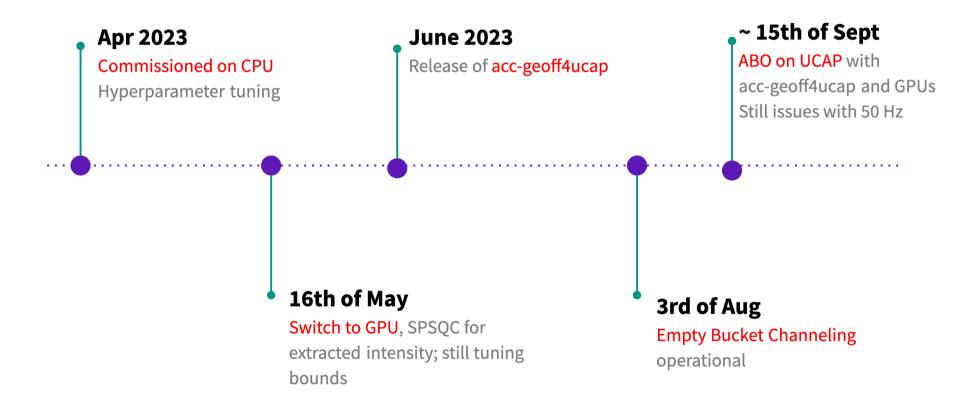
Since Long Shutdown 2, 50 and i.e. 100 Hz noise problematic.

Also, larger shot-by-shot fluctuations during day.


- \rightarrow auto-launch numerical optimisation in 2022 \rightarrow 50 Hz OK
- \rightarrow continuous control in 2023 with Adaptive Bayesian Optimisation and Empty Bucket Channeling \rightarrow 50 and 100 Hz OK

Since Long Shutdown 2, 50 and i.e. 100 Hz noise problematic.

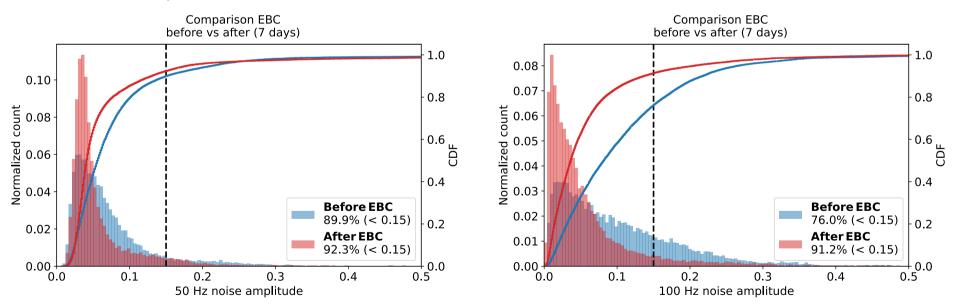
Also, larger shot-by-shot fluctuations during day.


- \rightarrow auto-launch numerical optimisation in 2022 \rightarrow 50 Hz OK
- \rightarrow continuous control in 2023 with Adaptive Bayesian Optimisation and Empty Bucket Channeling \rightarrow 50 and 100 Hz OK

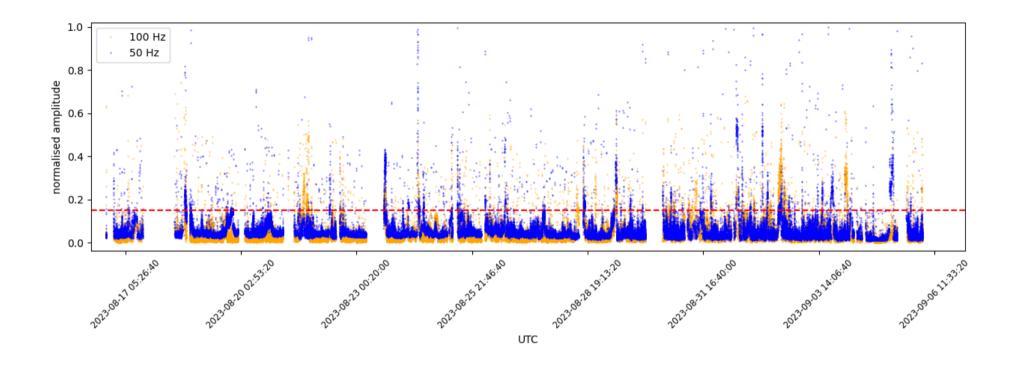
Evolution through 2023

ABO 2023

Performance improvements throughout the year!


Effect of Empty Bucket Channeling

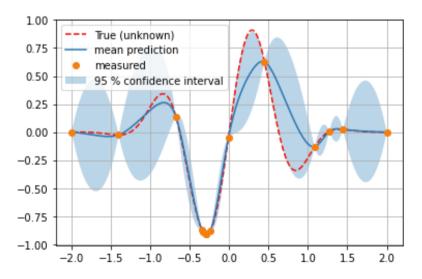
Comparison ABO+EBC of 7 days before and after switching on EBC.


★ Unfortunately EBC alone is not sufficient, ABO needs to do base correction

 \bigstar EBC improves the overall result

Impression - some weeks in Aug '23

 \rightarrow ABO tracks well; recovers after long stops


- \rightarrow Some issues still in 2023 all are being addressed
 - * exploration and hyperparameters, sharing GPU with other processes (→ controller lock-up), exploration spikes

Bayesian Optimisation - brief intro

★ Regression of objective function with probabilistic model: **Gaussian process** described by mean function $\mu(x)$ and covariance function $k(x, x') \rightarrow kernel$ function

- ★ GP is **conditioned** (no fit) with new data assuming prior and using Bayesian rule \rightarrow posterior
- ★ Optimisation: will not only use $\mu(x)$, but utilise also $\sigma(x) \rightarrow$ not optimising objective function directly, but **acquisition function** e.g. $\alpha(x) = \alpha(\mu(x), \sigma(x))$. Suitable for non-convex optimisation.

Example of 1D optimisation problem.

Can embed physics knowledge into kernel.

Kernel can also be tuned (fit) on historic data to increase sample-efficiency

Adaptive Bayesian Optimisation

Idea: build Gaussian Process for timeseries prediction with SpectralMixtureKernel S(t, t')

Gaussian Process Kernels for Pattern Discovery and Extrapolation

Andrew Gordon Wilson Department of Engineering, University of Cambridge, Cambridge, UK

Ryan Prescott Adams

AGW38@CAM.AC.UK

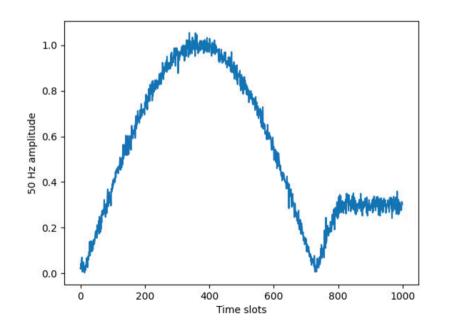
RPA@SEAS.HARVARD.EDU

School of Engineering and Applied Sciences, Harvard University, Cambridge, USA

 \rightarrow add one dimension in problem space: t to predict t + 1 into future; optimise x at $t + 1 \rightarrow$ continuous control

 \rightarrow GP with composite kernel: the kernel that is currently used: $\sigma^2 \times S(t,t') \times RBF(x,x')$

Tuning ABO - introduction


Simulation: simplified $n \times 50$ Hz control of slow extracted spill

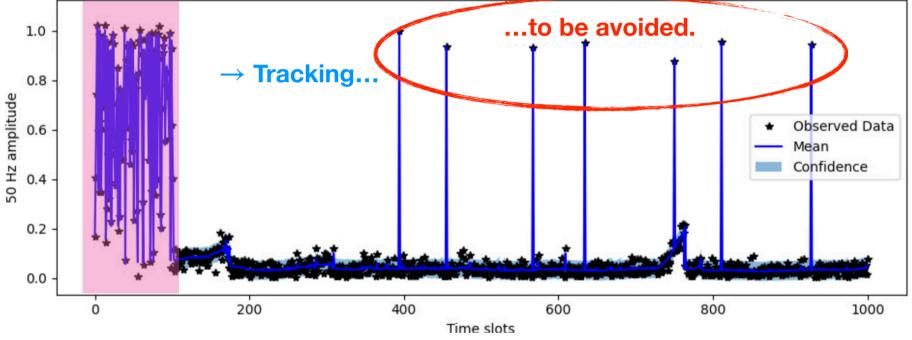
 \bigstar Only 50 Hz

 \bigstar Only 1 D: find correct phase

 \bigstar phase of spill is linearly changing over time

 \bigstar the spill measurement is noisy

Evolution of 50 Hz amplitude with constant correction


Tuning ABO - introduction

Using Upper Confidence Bound acquisition function:

 \bigstar hyperparameter β guides exploration, optimal: reactive, but sufficiently conservative

 \bigstar for continuous controller more hyperparameters: e.g. buffer length

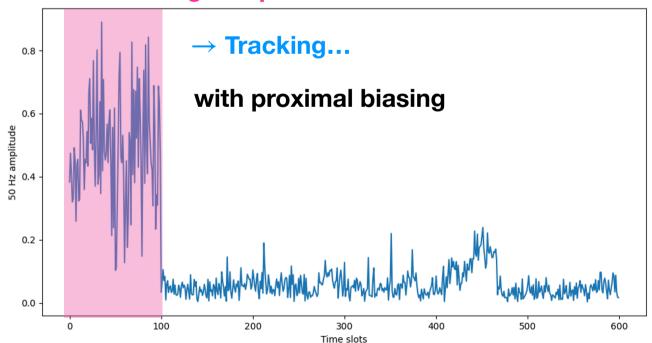
* key for forecasting accuracy; optimum buffer length to be tuned again for UCAP with GPU.

Implementation

- \bigstar ABO custom made algorithm based on BoTorch and <u>cernml-coi-optimizers</u> package \rightarrow GPU accelerated
- ★ 2 acc-geoff4ucap controllers: 50 Hz, 100 Hz
- ★ UCAP node with GPU: "Y" implementation
 - * SpillNoiseController sets QF phase and amplitude for $n \times 50$ Hz noise injection

ransformations	Actors	JSON	Active Subscriptions					
Name		Description				Queue	Calls	Issues
ControlSpill100Hz	100 Hz	ABO		STOPPED	0 / 32 (0)	0 (0)	0	
ControlSpill50Hz	50 Hz A	50 Hz ABO				0 / 32 (0)	0 (0)	0
5 pillNoiseControll	er Subscri	ption to c	ontrollers and publishing	g to actors	STOPPED	0 / 32 (0)	0 (0)	0

Avoiding exploration spikes - Proximal biasing


By wrapping the acquisition function $\tilde{\alpha}(x) = \alpha(x) \cdot \exp(-\frac{(x-x_0)^2}{2l^2})$,

 x_0 is last observed location in parameter space. l is an additional hyperparameter

 \rightarrow no exploration spikes, but slightly less reactive. To be tuned with beam.

Below: simulation with 2 DOF (phase, amplitude) \rightarrow no (big) spikes!

100 random training samples

Conclusion and next steps

Adaptive Bayesian Optimisation and Empty Bucket Channeling can sufficiently stabilise $n \times 50$ Hz ripples of NA spill.

2023 = first operational experience with all controls components for EBC+ABO; improvements throughout the year

2024 = full exploitation!

Next steps:

 \bigstar dedicated GPU?

 \bigstar tune 50 Hz buffer length for UCAP controller

 \bigstar tune proximal biasing

 \star ensure to be able to switch to spare power supply (QS) during run

* Current controls only for nominal power supply QF